Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Environ Pollut ; 148(3): 855-66, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17478020

ABSTRACT

The soil compartment is an important interface between the atmosphere and the subsurface hydrosphere. In this paper a conceptual approach for regional hydrologic soil modelling (RHSM) is presented, which provides two important qualities for modelling. First, the soil compartment is directly coupled to the atmosphere via the land surface and to the aquifers. Second, extremely fine (5cm vertical) resolutions of the soil system can be realized at regional scales (several hundreds of km(2)). This high-resolution modelling could be achieved by parallel computation techniques. The RHSM approach is applied to the Beerze-Reusel drainage basin, which belongs to the Meuse River basin. Moisture transport in the soil system was calculated with extremely high vertical resolution at a regional scale based on rainfall-evaporation data for the year 2000. As a result, highly resolved regional groundwater recharge pattern addressing the heterogeneity of soil systems could be determined.


Subject(s)
Models, Theoretical , Soil , Water Movements , Water Supply
2.
J Contam Hydrol ; 81(1-4): 89-105, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16183165

ABSTRACT

In this paper we present numerical simulations carried out to assess the importance of density-dependent flow on tracer plume development. The scenario considered in the study is characterized by a short-term tracer injection phase into a fully penetrating well and a natural hydraulic gradient. The scenario is thought to be typical for tracer tests conducted in the field. Using a reference case as a starting point, different model parameters were changed in order to determine their importance to density effects. The study is based on a three-dimensional model domain. Results were interpreted using concentration contours and a first moment analysis. Tracer injections of 0.036 kg per meter of saturated aquifer thickness do not cause significant density effects assuming hydraulic gradients of at least 0.1%. Higher tracer input masses, as used for geoelectrical investigations, may lead to buoyancy-induced flow in the early phase of a tracer test which in turn impacts further plume development. This also holds true for shallow aquifers. Results of simulations with different tracer injection rates and durations imply that the tracer input scenario has a negligible effect on density flow. Employing model cases with different realizations of a log conductivity random field, it could be shown that small variations of hydraulic conductivity in the vicinity of the tracer injection well have a major control on the local tracer distribution but do not mask effects of buoyancy-induced flow.


Subject(s)
Fresh Water , Models, Chemical , Soil , Water Pollutants , Computer Simulation , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL