ABSTRACT
Anxiety disorders are among the most common mental disorders. Treatment guidelines recommend pharmacotherapy and cognitive behavioral therapy as standard treatment. Although cognitive behavioral therapy is an effective therapeutic approach, not all patients benefit sufficiently from it. In recent years, non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, have been investigated as promising adjuncts in the treatment of affective disorders. The aim of this study is to investigate whether a combination of intermittent theta burst stimulation (iTBS) and virtual reality exposure therapy leads to a significantly greater reduction in acrophobia than virtual reality exposure with sham stimulation. In this randomized double-blind placebo-controlled study, 43 participants with acrophobia received verum or sham iTBS over the left dorsolateral prefrontal cortex prior to two sessions of virtual reality exposure therapy. Stimulation of the left dorsolateral prefrontal cortex with iTBS was motivated by an experimental study showing a positive effect on extinction memory retention. Acrophobic symptoms were assessed using questionnaires and two behavioral approach tasks one week before, after treatment and six months after the second diagnostic session. The results showed that two sessions of virtual reality exposure therapy led to a significant reduction in acrophobic symptoms, with an overall remission rate of 79â¯%. However, there was no additional effect of iTBS of the left dorsolateral prefrontal cortex on the therapeutic effects. Further research is needed to determine how exactly a combination of transcranial magnetic stimulation and exposure therapy should be designed to enhance efficacy.
Subject(s)
Dorsolateral Prefrontal Cortex , Phobic Disorders , Transcranial Magnetic Stimulation , Virtual Reality Exposure Therapy , Humans , Double-Blind Method , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Dorsolateral Prefrontal Cortex/physiology , Virtual Reality Exposure Therapy/methods , Phobic Disorders/therapy , Treatment Outcome , Young Adult , Middle Aged , Theta Rhythm/physiology , Prefrontal Cortex/physiology , Combined Modality TherapyABSTRACT
BACKGROUND: Performance anxiety is the most frequently reported anxiety disorder among professional musicians. Typical symptoms are - on a physical level - the consequences of an increase in sympathetic tone with cardiac stress, such as acceleration of heartbeat, increase in blood pressure, increased respiratory rate and tremor up to nausea or flush reactions. These symptoms can cause emotional distress, a reduced musical and artistical performance up to an impaired functioning. While anxiety disorders are preferably treated using cognitive-behavioral therapy with exposure, this approach is rather difficult for treating music performance anxiety since the presence of a public or professional jury is required and not easily available. The use of virtual reality (VR) could therefore display an alternative. So far, no therapy studies on music performance anxiety applying virtual reality exposure therapy have investigated the therapy outcome including cardiovascular changes as outcome parameters. METHODS: This mono-center, prospective, randomized and controlled clinical trial has a pre-post design with a follow-up period of 6 months. 46 professional and semi-professional musicians will be recruited and allocated randomly to an VR exposure group or a control group receiving progressive muscle relaxation training. Both groups will be treated over 4 single sessions. Music performance anxiety will be diagnosed based on a clinical interview using ICD-10 and DSM-5 criteria for specific phobia or social anxiety. A behavioral assessment test is conducted three times (pre, post, follow-up) in VR through an audition in a concert hall. Primary outcomes are the changes in music performance anxiety measured by the German Bühnenangstfragebogen and the cardiovascular reactivity reflected by heart rate variability (HRV). Secondary outcomes are changes in blood pressure, stress parameters such as cortisol in the blood and saliva, neuropeptides, and DNA-methylation. DISCUSSION: The trial investigates the effect of VR exposure in musicians with performance anxiety compared to a relaxation technique on anxiety symptoms and corresponding cardiovascular parameters. We expect a reduction of anxiety but also a consecutive improvement of HRV with cardiovascular protective effects. TRIAL REGISTRATION: This study was registered on clinicaltrials.gov. (ClinicalTrials.gov Number: NCT05735860).
Subject(s)
Music , Performance Anxiety , Virtual Reality Exposure Therapy , Virtual Reality , Humans , Relaxation Therapy , Prospective Studies , Anxiety/therapy , Virtual Reality Exposure Therapy/methodsABSTRACT
Objective: Perception of time as well as rhythm in musical structures rely on complex brain mechanisms and require an extended network of multiple neural sources. They are therefore sensitive to impairment. Several psychophysical studies have shown that patients with Parkinson's disease (PD) have deficits in perceiving time and rhythms due to a malfunction of the basal ganglia (BG) network. Method: In this study we investigated the time perception of PD patients during music perception by assessing their just noticeable difference (JND) in the time perception of a complex musical Gestalt. We applied a temporal discrimination task using a short melody with a clear beat-based rhythm. Among the subjects, 26 patients under L-Dopa administration and 21 age-matched controls had to detect an artificially delayed time interval in the range between 80 and 300 ms in the middle of the musical period. We analyzed the data by (a) calculating the detection threshold directly, (b) by extrapolating the JNDs, (c) relating it to musical expertise. Results: Patients differed from controls in the detection of time-intervals between 220 and 300 ms (*p = 0.0200, n = 47). Furthermore, this deficit depended on the severity of the disease (*p = 0.0452; n = 47). Surprisingly, PD patients did not show any deficit of their JND compared to healthy controls, although the results showed a trend (*p = 0.0565, n = 40). Furthermore, no significant difference of the JND was found according to the severity of the disease. Additionally, musically trained persons seemed to have lower thresholds in detecting deviations in time and syntactic structures of music (*p = 0.0343, n = 39). Conclusion: As an explanation of these results, we would like to propose the hypothesis of a time-syntax-congruency in music perception suggesting that processing of time and rhythm is a Gestalt process and that cortical areas involved in processing of musical syntax may compensate for impaired BG circuits that are responsible for time processing and rhythm perception. This mechanism may emerge more strongly as the deficits in time processing and rhythm perception progress. Furthermore, we presume that top-down-bottom-up-processes interfere additionally and interact in this context of compensation.
ABSTRACT
Perylene-based compounds are promising materials for opto-electronic thin film devices but despite intense investigations, important details of their electronic structure are still under debate. For perylene-3,4,9,10-tetracarboxylic dianhydrid (PTCDA), the theoretical models predict a different relative energetic order of Frenkel and Charge Transfer (CT) states. Additionally, while one model indicates strong differences between PTCDA on one hand and other perylene-based compounds on the other, recent ab initio computations indicate electronic properties of all perylene-based compounds to resemble each other. Finally, the models disagree about the amount of mixing between CT and Frenkel states. Definitive answers to these questions are difficult because the approaches use various approximations. Up to date, the ab initio based methods employ rather small model systems and neglect environmental effects. In the present work, we improve our former approach by analyzing the effects of the various simplifications. In more detail, we increase the size of the model systems, include environmental effects and investigate the influence of exciton-phonon couplings on the absorption spectrum. The computations for larger aggregates were performed with the ZINDO/S approach, because benchmark computations show that it provides accurate vertical excitation energies for Frenkel, as well as CT states.
ABSTRACT
To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the relative positions of electronically excited states of dimers of different perylene dyes. Polarization effects are particularly interesting for these systems, because gas phase computations predict that the CT states lie slightly above the corresponding Frenkel states. A polarizable environment may change this energy order because CT states are thought to be more sensitive to a polarizable surrounding than Frenkel states. A first insight we got via a TD-HF approach in combination with a polarizable continuum model (PCM). These give limited insights because TD-HF overestimates excitation energies of CT states. However, SCS-CC2 approaches, which are sufficiently accurate, cannot easily be used in combination with continuum solvent models. Hence, we developed two approaches to combine gas phase SCS-CC2 results with solvent effects based on TD-HF computations. Their accuracies were finally checked via ADC(2)//COSMO computations. The results show that for perylene dyes a polarizable surrounding alone does not influence the energetic ordering of CT and Frenkel states. Variations in the energy order of the states only result from nuclear relaxation effects after the excitation process. © 2016 Wiley Periodicals, Inc.
ABSTRACT
The presented program package, Conformational Analysis and Search Tool (CAST) allows the accurate treatment of large and flexible (macro) molecular systems. For the determination of thermally accessible minima CAST offers the newly developed TabuSearch algorithm, but algorithms such as Monte Carlo (MC), MC with minimization, and molecular dynamics are implemented as well. For the determination of reaction paths, CAST provides the PathOpt, the Nudge Elastic band, and the umbrella sampling approach. Access to free energies is possible through the free energy perturbation approach. Along with a number of standard force fields, a newly developed symmetry-adapted perturbation theory-based force field is included. Semiempirical computations are possible through DFTB+ and MOPAC interfaces. For calculations based on density functional theory, a Message Passing Interface (MPI) interface to the Graphics Processing Unit (GPU)-accelerated TeraChem program is available. The program is available on request.
ABSTRACT
Properties of a series of acetylene-linked perylene bisimide (PBI) macrocycles with different ring size composed of three to six PBI dyes were investigated by atomic force microscopy (AFM) and single-molecule fluorescence spectroscopy in a condensed phase. It was demonstrated that the structures of PBI cyclic arrays (CNs, N = 3, 4, 5, and 6) become distorted with increasing the ring size through molecular dynamics (MD) simulations (PM6-DH2 method) and AFM height images of CNs on highly ordered pyrolytic graphite (HOPG) surface. The MD simulations showed that only C5 and C6 rings are highly flexible molecules whose planarization goes along with a significant energetic penalty. Accordingly, both molecules did not show ordered adlayers on a HOPG surface. In contrast, C3 and C4 are far more rigid molecules leading to well-ordered hexagonal (C3) and rectangular (C4) 2D lattices. At the single-molecule level, we showed that the fluorescence properties of single CNs are affected by the structural changes. The fluorescence lifetimes of CNs became shorter and their distributions became broader due to the structural distortions with increasing the ring size. Furthermore, the CNs of smaller ring size exhibit a higher photostability and an efficient excitation energy transfer (EET) due to the more well-defined and planar structures compared to the larger CNs. Consequently, these observations provide evidence that not only PBI macrocycles are promising candidates for artificial light-harvesting systems, but also the photophysical properties of CNs are strongly related to the structural rigidity of CNs.