Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(1): 013507, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725597

ABSTRACT

A new tool for the exploration and diagnosis of the internal magnetic field of plasmas in the DIII-D tokamak in the form of a constraint on the EFIT (Equilibrium Fitting) Grad-Shafranov code based on the Faraday-effect Radial Interferometer-Polarimeter (RIP) diagnostic is presented, including description, verification, and sample application. The physics underlying the diagnostic and its implementation into EFIT are discussed, and the results showing the verification of the model are given, and the model's limitations are discussed. The influence of the diagnostic's input on the resulting equilibrium parameters is characterized. The effect of electron density profile refinement is evaluated and found to be negligible. A sample application of the diagnostic is shown, indicating that the RIP constraint has similar effects on the equilibrium as motional Stark effect constraints do.

2.
Rev Sci Instrum ; 93(8): 083515, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36050047

ABSTRACT

Toroidal current profile measurements in the tokamak plasma edge are critical for fusion plasma physics research and model validation. A three-wave Faraday-effect polarimeter-interferometer with a sub-centimeter spatial resolution is proposed on the DIII-D tokamak to determine the edge current profile via Abel inversion. By using probe beams with 316 µm wavelength, a low-field-side, vertical-view, single-pass optical layout covering the plasma edge region (R = 2.15-2.27 m) is assessed. Measurements with no greater than 0.1° polarimetric systematic uncertainty, no greater than 0.01° polarimetric root-mean-square noise (1 kHz bandwidth), and a 0.8 cm radial chord spacing are considered feasible based on the achieved performance of existing systems using similar wavelengths on fusion devices. Synthetic diagnostic calculations taking various factors into account, such as diagnostic uncertainty and quality of magnetic flux surfaces, find that the edge current profile can be determined with up to 0.12 MA/m2 uncertainty, or about 10% of the peak current density in the pedestal of an investigated high-confinement plasma.

SELECTION OF CITATIONS
SEARCH DETAIL