Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
2.
Anesth Analg ; 94(1 Suppl): S8-12, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11900044

ABSTRACT

The performance of a new calibrator for pulse oximeters is tested with five pulse oximeters from different manufacturers. The calibrator is based on time resolved transmission spectra of human fingers. Finger spectra with different arterial oxygen saturation can be selected to simulate real patients. The results obtained with this calibration device are compared with the results of conventional calibration procedures with volunteers. Beside accuracy tests the suitability for artifact simulation with the new device is discussed. The response of the five tested pulse oximeters is in good agreement with the response of the pulse oximeters connected to real patients. A test procedure for pulse oximeters similar to the conventional desaturation practice is possible; some of the typical artifacts pulse oximetry has to cope with can be simulated easily.


Subject(s)
Equipment Design , Oximetry/standards , Calibration , Humans
3.
J Clin Monit Comput ; 16(3): 161-9, 2000.
Article in English | MEDLINE | ID: mdl-12578099

ABSTRACT

OBJECTIVE: To develop and test a method for standardized calibration of pulse oximeters. METHODS: A novel pulse oximeter calibration technique capable of simulating the behavior of real patients is discussed. It is based on an artificial finger with a variable spectral-resolved light attenuator in conjunction with an extensive clinical database of time-resolved optical transmission spectra of patients fingers in the wavelength range 600-1000 nm. The arterial oxygen saturation of the patients at the time of recording was derived by analyzing a corresponding blood sample with a CO-oximeter. These spectra are used to compute the modulation of the light attenuator which is attached to the artificial finger. This calibration method was tested by arbitrarily playing back recorded spectra to pulse oximeters and comparing their display to the value they displayed when the spectra were recorded. RESULTS: We were able to demonstrate that the calibrator could generate physiological signals which are accepted by a pulse oximeter. We also present some experience of playing back recorded patient spectra. The mean difference between the original reading of the pulse oximeters and the display when attached to the calibrator is 1.2 saturation points (displayed oxygen saturation SpO2) with a standard deviation of 1.9 saturation points. CONCLUSIONS: The tests have shown the capabilities of a spectral light modulator for use as a possible calibration standard for pulse oximeters. If some improvements of the current prototype can be achieved we conclude from the experience with the device that this novel concept for the calibration of pulse oximeters is feasible and that it could become an important tool for assessing the performance of pulse oximeters.


Subject(s)
Oximetry/standards , Calibration , Fingers , Humans , Models, Structural , Oximetry/instrumentation , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL