Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
Add more filters








Publication year range
1.
Int J Biol Macromol ; 277(Pt 4): 134390, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111466

ABSTRACT

Members of the KCTD protein family play key roles in fundamental physio-pathological processes including cancer, neurodevelopmental/neuropsychiatric, and genetic diseases. Here, we report the crystal structure of the KCTD1 P20S mutant, which causes the scalp-ear-nipple syndrome, and molecular dynamics (MD) data on the wild-type protein. Surprisingly, the structure unravels that the N-terminal region, which precedes the BTB domain (preBTB) and bears the disease-associated mutation, adopts a folded polyproline II (PPII) state. The KCTD1 pentamer is characterized by an intricate architecture in which the different subunits mutually exchange domains to generate a closed domain swapping motif. Indeed, the BTB of each chain makes peculiar contacts with the preBTB and the C-terminal domain (CTD) of an adjacent chain. The BTB-preBTB interaction consists of a PPII-PPII recognition motif whereas the BTB-CTD contacts are mediated by an unusual (+/-) helix discontinuous association. The inspection of the protein structure, along with the data emerged from the MD simulations, provides an explanation of the pathogenicity of the P20S mutation and unravels the role of the BTB-preBTB interaction in the insurgence of the disease. Finally, the presence of potassium bound to the central cavity of the CTD pentameric assembly provides insights into the role of KCTD1 in metal homeostasis.


Subject(s)
Co-Repressor Proteins , Mutation , Humans , Amino Acid Sequence , Co-Repressor Proteins/chemistry , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Domains , Structure-Activity Relationship
2.
NPJ Vaccines ; 9(1): 151, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39155280

ABSTRACT

ESKAPE pathogens are responsible for complicated nosocomial infections worldwide and are often resistant to commonly used antibiotics in clinical settings. Among ESKAPE, vancomycin-resistant Enterococcus faecium (VREfm) and methicillin-resistant Staphylococcus aureus (MRSA) are two important Gram-positive pathogens for which non-antibiotic alternatives are urgently needed. We previously showed that the lipoprotein AdcA of E. faecium elicits opsonic and protective antibodies against E. faecium and E. faecalis. Prompted by our observation, reported here, that AdcA also elicits opsonic antibodies against MRSA and other clinically relevant Gram-positive pathogens, we identified the dominant epitope responsible for AdcA cross-reactive activity and designed a hyper-thermostable and multi-presenting antigen, Sc(EH)3. We demonstrate that antibodies raised against Sc(EH)3 mediate opsonic killing of a wide-spectrum of Gram-positive pathogens, including VREfm and MRSA, and confer protection both in passive and active immunisation models. Our data indicate that Sc(EH)3 is a promising antigen for the development of vaccines against different Gram-positive pathogens.

3.
BMC Microbiol ; 24(1): 280, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39068414

ABSTRACT

BACKGROUND: Enterococcus faecium and Staphylococcus aureus are the Gram-positive pathogens of the ESKAPE group, known to represent a great threat to human health due to their high virulence and multiple resistances to antibiotics. Combined, enterococci and S. aureus account for 26% of healthcare-associated infections and are the most common organisms responsible for blood stream infections. We previously showed that the peptidyl-prolyl cis/trans isomerase (PPIase) PpiC of E. faecium elicits the production of specific, opsonic, and protective antibodies that are effective against several strains of E. faecium and E. faecalis. Due to the ubiquitous characteristics of PPIases and their essential function within Gram-positive cells, we hypothesized a potential cross-reactive effect of anti-PpiC antibodies. RESULTS: Opsonophagocytic assays combined with bioinformatics led to the identification of the foldase protein PrsA as a new potential vaccine antigen in S. aureus. We show that PrsA is a stable dimeric protein able to elicit opsonic antibodies against the S. aureus strain MW2, as well as cross-binding and cross-opsonic in several S. aureus, E. faecium and E. faecalis strains. CONCLUSIONS: Given the multiple antibiotic resistances S. aureus and enterococci present, finding preventive strategies is essential to fight those two nosocomial pathogens. The study shows the potential of PrsA as an antigen to use in vaccine formulation against the two dangerous Gram-positive ESKAPE bacteria. Our findings support the idea that PPIases should be further investigated as vaccine targets in the frame of pan-vaccinomics strategy.


Subject(s)
Bacterial Proteins , Enterococcus faecalis , Enterococcus faecium , Peptidylprolyl Isomerase , Staphylococcus aureus , Staphylococcus aureus/immunology , Staphylococcus aureus/genetics , Enterococcus faecium/immunology , Enterococcus faecium/genetics , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Peptidylprolyl Isomerase/immunology , Peptidylprolyl Isomerase/genetics , Enterococcus faecalis/immunology , Enterococcus faecalis/genetics , Humans , Gram-Positive Bacterial Infections/prevention & control , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/microbiology , Bacterial Vaccines/immunology , Opsonin Proteins/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Animals , Cross Reactions , Mice , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Phagocytosis , Staphylococcal Infections/prevention & control , Staphylococcal Infections/immunology , Staphylococcal Infections/microbiology
4.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672487

ABSTRACT

Tuberculosis (TB) is the leading global cause of death f rom an infectious bacterial agent. Therefore, limiting its epidemic spread is a pressing global health priority. The chaperone-like protein HtpG of M. tuberculosis (Mtb) is a large dimeric and multi-domain protein with a key role in Mtb pathogenesis and promising antigenic properties. This dual role, likely associated with the ability of Heat Shock proteins to act both intra- and extra-cellularly, makes HtpG highly exploitable both for drug and vaccine development. This review aims to gather the latest updates in HtpG structure and biological function, with HtpG operating in conjunction with a large number of chaperone molecules of Mtb. Altogether, these molecules help Mtb recovery after exposure to host-like stress by assisting the whole path of protein folding rescue, from the solubilisation of aggregated proteins to their refolding. Also, we highlight the role of structural biology in the development of safer and more effective subunit antigens. The larger availability of structural information on Mtb antigens and a better understanding of the host immune response to TB infection will aid the acceleration of TB vaccine development.


Subject(s)
Antigens, Bacterial , Bacterial Proteins , Mycobacterium tuberculosis , Tuberculosis Vaccines , Virulence Factors , Mycobacterium tuberculosis/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Virulence Factors/immunology , Virulence Factors/chemistry , Humans , Tuberculosis Vaccines/immunology , Bacterial Proteins/immunology , Bacterial Proteins/chemistry , Tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/microbiology , Animals , Molecular Chaperones/immunology , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism
5.
mBio ; 14(5): e0132923, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37707438

ABSTRACT

IMPORTANCE: In this work, we determined the structure of Klebsiella phage KP34p57 capsular depolymerase and dissected the role of individual domains in trimerization and functional activity. The crystal structure serendipitously revealed that the enzyme can exist in a monomeric state once deprived of its C-terminal domain. Based on the crystal structure and site-directed mutagenesis, we localized the key catalytic residues in an intra-subunit deep groove. Consistently, we show that C-terminally trimmed KP34p57 variants are monomeric, stable, and fully active. The elaboration of monomeric, fully active phage depolymerases is innovative in the field, as no previous example exists. Indeed, mini phage depolymerases can be combined in chimeric enzymes to extend their activity ranges, allowing their use against multiple serotypes.


Subject(s)
Bacteriophages , Klebsiella , Klebsiella/genetics , Bacteriophages/genetics , Klebsiella pneumoniae/genetics
6.
Biomolecules ; 13(8)2023 07 31.
Article in English | MEDLINE | ID: mdl-37627265

ABSTRACT

Tuberculosis (TB) remains one of the main causes of death by infection, especially in immunocompromised patients [...].


Subject(s)
Tuberculosis , Virulence Factors , Humans , Immunocompromised Host
7.
Int J Mol Sci ; 24(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37239905

ABSTRACT

CD59 is an abundant immuno-regulatory human protein that protects cells from damage by inhibiting the complement system. CD59 inhibits the assembly of the Membrane Attack Complex (MAC), the bactericidal pore-forming toxin of the innate immune system. In addition, several pathogenic viruses, including HIV-1, escape complement-mediated virolysis by incorporating this complement inhibitor in their own viral envelope. This makes human pathogenic viruses, such as HIV-1, not neutralised by the complement in human fluids. CD59 is also overexpressed in several cancer cells to resist the complement attack. Consistent with its importance as a therapeutical target, CD59-targeting antibodies have been proven to be successful in hindering HIV-1 growth and counteracting the effect of complement inhibition by specific cancer cells. In this work, we make use of bioinformatics and computational tools to identify CD59 interactions with blocking antibodies and to describe molecular details of the paratope-epitope interface. Based on this information, we design and produce paratope-mimicking bicyclic peptides able to target CD59. Our results set the basis for the development of antibody-mimicking small molecules targeting CD59 with potential therapeutic interest as complement activators.


Subject(s)
Complement System Proteins , HIV-1 , Humans , Binding Sites, Antibody , Complement System Proteins/metabolism , CD59 Antigens/metabolism , Complement Membrane Attack Complex/metabolism , Complement Inactivating Agents , HIV-1/physiology
8.
Biomolecules ; 13(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-37238682

ABSTRACT

BACKGROUND: The mycobacterial PE_PGRS protein family is present only in pathogenic strains of the genus mycobacterium, such as Mtb and members of the MTB complex, suggesting a likely important role of this family in pathogenesis. Their PGRS domains are highly polymorphic and have been suggested to cause antigenic variations and facilitate pathogen survival. The availability of AlphaFold2.0 offered us a unique opportunity to better understand structural and functional properties of these domains and a role of polymorphism in Mtb evolution and dissemination. METHODS: We made extensive use of AlphaFold2.0 computations and coupled them with sequence distribution phylogenetic and frequency analyses, and antigenic predictions. RESULTS: Modeling of several polymorphic forms of PE_PGRS33, the prototype of the PE_PGRS family and sequence analyses allowed us to predict the structural impact of mutations/deletions/insertions present in the most frequent variants. These analyses well correlate with the observed frequency and with the phenotypic features of the described variants. CONCLUSIONS: Here, we provide a thorough description of structural impacts of the observed polymorphism of PE_PGRS33 protein and we correlate predicted structures to the known fitness of strains containing specific variants. Finally, we also identify protein variants associated with bacterial evolution, showing sophisticated modifications likely endowed with a gain-of-function role during bacterial evolution.


Subject(s)
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolism , Phylogeny , Bacterial Proteins/metabolism , Polymorphism, Genetic , Mutation
9.
Microbiologyopen ; 12(1): e1311, 2023 02.
Article in English | MEDLINE | ID: mdl-36825886

ABSTRACT

Universal stress proteins (USPs) are ubiquitously expressed in bacteria, archaea, and eukaryotes and play a lead role in adaptation to environmental conditions. They enable adaptation of bacterial pathogens to the conditions encountered in the human niche, including hypoxia, oxidative stress, osmotic stress, nutrient deficiency, or acid stress, thereby facilitating colonization. We previously reported that all six USP proteins encoded within a low-oxygen activated (lxa) locus in Burkholderia cenocepacia showed increased abundance during chronic colonization of the cystic fibrosis (CF) lung. However, the role of USPs in chronic cystic fibrosis infection is not well understood. Structural modeling identified surface arginines on one lxa-encoded USP, USP76, which suggested it mediated interactions with heparan sulfate. Using mutants derived from the B. cenocepacia strain, K56-2, we show that USP76 is involved in host cell attachment. Pretreatment of lung epithelial cells with heparanase reduced the binding of the wild-type and complement strains but not the Δusp76 mutant strain, indicating that USP76 is directly or indirectly involved in receptor recognition on the surface of epithelial cells. We also show that USP76 is required for growth and survival in many conditions associated with the CF lung, including acidic conditions and oxidative stress. Moreover, USP76 also has a role in survival in macrophages isolated from people with CF. Overall, while further elucidation of the exact mechanism(s) is required, we can conclude that USP76, which is upregulated during chronic infection, is involved in bacterial survival within CF macrophages, a hallmark of Burkholderia infection.


Subject(s)
Burkholderia Infections , Burkholderia cenocepacia , Cystic Fibrosis , Humans , Burkholderia cenocepacia/metabolism , Heat-Shock Proteins/metabolism , Persistent Infection , Hypoxia
10.
Cells ; 12(2)2023 01 14.
Article in English | MEDLINE | ID: mdl-36672252

ABSTRACT

Tuberculosis (TB) is still the leading global cause of death from an infectious bacterial agent. Limiting tuberculosis epidemic spread is therefore an urgent global public health priority. As stated by the WHO, to stop the spread of the disease we need a new vaccine, with better coverage than the current Mycobacterium bovis BCG vaccine. This vaccine was first used in 1921 and, since then, there are still no new licensed tuberculosis vaccines. However, there is extremely active research in the field, with a steep acceleration in the past decades, due to the advance of technologies and more rational vaccine design strategies. This review aims to gather latest updates in vaccine development in the various clinical phases and to underline the contribution of Structural Vaccinology (SV) to the development of safer and effective antigens. In particular, SV and the development of vaccine adjuvants is making the use of subunit vaccines, which are the safest albeit the less antigenic ones, an achievable goal. Indeed, subunit vaccines overcome safety concerns but need to be rationally re-engineered to enhance their immunostimulating effects. The larger availability of antigen structural information as well as a better understanding of the complex host immune response to TB infection is a strong premise for a further acceleration of TB vaccine development.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Humans , Tuberculosis/prevention & control , BCG Vaccine , Vaccines, Subunit
11.
Cells ; 11(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36497063

ABSTRACT

The global threat of antimicrobial resistance (AMR) poses a difficult challenge, as underscored by the World Health Organization (WHO), which identifies AMR as one of the three greatest threats to human health [...].


Subject(s)
Bacterial Vaccines , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , World Health Organization
12.
Cells ; 11(22)2022 11 14.
Article in English | MEDLINE | ID: mdl-36429024

ABSTRACT

COVID-19 (coronavirus disease 2019) is a threatening disease caused by the novel enveloped, positive-sense, single-stranded RNA beta-coronavirus, denoted as SARS-CoV-2 [...].


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virulence , RNA , Disease Outbreaks
13.
Int J Biol Macromol ; 221: 1012-1021, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36113585

ABSTRACT

Ageritin is a ribotoxin-like protein of biotechnological interest, belonging to a family of ribonucleases from edible mushrooms. Its enzymatic activity is explicated through the hydrolysis of a single phosphodiester bond, located in the sarcin/ricin loop of ribosomes. Unlike other ribotoxins, ageritin activity requires divalent cations (Zn2+). Here we investigated the conformational stability of ageritin in the pH range 4.0-7.4, using calorimetric and spectroscopic techniques. We observed a high protein thermal stability at all pHs with a denaturation temperature of 78 °C. At pH 5.0 we calculated a value of 36 kJ mol-1 for the unfolding Gibbs energy at 25 °C. We also analysed the thermodynamic and catalytic behaviour of S-pyridylethylated form, obtained by alkylating the single Cys18 residue, which is predicted to bind Zn2+. We show that this form possesses the same activity and structure of ageritin, but lower stability. In fact, the corresponding values of 52 °C and 14 kJ mol-1 were found. Conservation of activity is consistent with the location of alkylation site on the opposite site of the catalytic site cleft. Inasmuch as Cys18 is part of a structurally stabilizing zinc-binding site, disrupted by cysteine alkylation, our results point to an important role of metal ions in ageritin stability.


Subject(s)
Agaricales , Ribonucleases , Ribonucleases/chemistry , Ribosomes/metabolism , Agaricales/chemistry , Genes, Fungal , Protein Denaturation , Thermodynamics
14.
PLoS Pathog ; 18(9): e1010760, 2022 09.
Article in English | MEDLINE | ID: mdl-36048802

ABSTRACT

The impact of artificial intelligence (AI) in understanding biological processes is potentially immense. Structural elucidation of mycobacterial PE_PGRS is sustenance to unveil the role of these enigmatic proteins. We propose a PGRS "sailing" model as a smart tool to diffuse along the mycomembrane, to expose structural motifs for host interactions, and/or to ship functional protein modules at their C-terminus.


Subject(s)
Antigens, Bacterial , Mycobacterium tuberculosis , Antigens, Bacterial/metabolism , Artificial Intelligence , Bacterial Proteins/metabolism , Cell Wall/metabolism , Mycobacterium tuberculosis/metabolism
15.
Front Mol Biosci ; 9: 964645, 2022.
Article in English | MEDLINE | ID: mdl-36032688

ABSTRACT

Vaccine development against Tuberculosis is a strong need, given the low efficacy of the sole vaccine hitherto used, the Bacillus Calmette-Guérin (BCG) vaccine. The chaperone-like protein HtpGMtb of M. tuberculosis is a large dimeric and multi-domain protein with promising antigenic properties. We here used biophysical and biochemical studies to improve our understanding of the structural basis of HtpGMtb functional role and immunogenicity, a precious information to engineer improved antigens. We showed that HtpGMtb is a dimeric nucleotide-binding protein and identified the dimerisation interface on the C-terminal domain of the protein. We also showed that the most immunoreactive regions of the molecule are located on the C-terminal and middle domains of the protein, whereas no role is played by the catalytic N-terminal domain in the elicitation of the immune response. Based on these observations, we experimentally validated our predictions in mice, using a plethora of immunological assays. As an outcome, we designed vaccine antigens with enhanced biophysical properties and ease of production, albeit conserved or enhanced antigenic properties. Our results prove the efficacy of structural vaccinology approaches in improving our understanding of the structural basis of immunogenicity, a precious information to engineer more stable, homogeneous, efficiently produced, and effective vaccine antigens.

16.
Antibiotics (Basel) ; 11(7)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35884215

ABSTRACT

The spread of microorganisms causing health-care associated infection (HAI) is contributed to by their intrinsic tolerance to a variety of biocides, used as antiseptics or disinfectants. The natural monomeric stilbenoid resveratrol (RV) is able to modulate the susceptibility to the chlorhexidine digluconate (CHX) biocide in Acinetobacter baumannii. In this study, a panel of reference strains and clinical isolates of Gram-negative bacteria, Gram-positive bacteria and yeasts were analyzed for susceptibility to CHX and benzalkonium chloride (BZK) and found to be tolerant to one or both biocides. The carbonyl cyanide m-chlorophenylhydrazine protonophore (CCCP) efflux pump inhibitor reduced the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CHX and BZK in the majority of strains. RV reduced dose-dependently MIC and MBC of CHX and BZK biocides when used as single agents or in combination in all analyzed strains, but not CHX MIC and MBC in Pseudomonas aeruginosa, Candida albicans, Klebsiella pneumoniae, Stenotrophomonas maltophilia and Burkholderia spp. strains. In conclusion, RV reverts tolerance and restores susceptibility to CHX and BZK in the majority of microorganisms responsible for HAI. These results indicates that the combination of RV, CHX and BZK may represent a useful strategy to maintain susceptibility to biocides in several nosocomial pathogens.

17.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628409

ABSTRACT

Coronaviruses, including SARS-CoV-2 (the etiological agent of the current COVID-19 pandemic), rely on the surface spike glycoprotein to access the host cells, mainly through the interaction of their receptor-binding domain (RBD) with the human angiotensin-converting enzyme 2 (ACE2). Therefore, molecular entities able to interfere with the binding of the SARS-CoV-2 spike protein to ACE2 have great potential to inhibit viral entry. Starting from the available structural data on the interaction between SARS-CoV-2 spike protein and the host ACE2 receptor, we engineered a set of soluble and stable spike interactors, here denoted as S-plugs. Starting from the prototype S-plug, we adopted a computational approach by combining stability prediction, associated to single-point mutations, with molecular dynamics to enhance both S-plug thermostability and binding affinity to the spike protein. The best developed molecule, S-plug3, possesses a highly stable α-helical con-formation (with melting temperature Tm of 54 °C) and can interact with the spike RBD and S1 domains with similar low nanomolar affinities. Importantly, S-plug3 exposes the spike RBD to almost the same interface as the human ACE2 receptor, aimed at the recognition of all ACE2-accessing coronaviruses. Consistently, S-plug3 preserves a low nanomolar dissociation constant with the delta B.1.617.2 variant of SARS-CoV-2 spike protein (KD = 29.2 ± 0.6 nM). Taken together, we provide valid starting data for the development of therapeutical and diagnostic tools against coronaviruses accessing through ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , Humans , Membrane Glycoproteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry
18.
Microbiologyopen ; 11(1): e1264, 2022 02.
Article in English | MEDLINE | ID: mdl-35212475

ABSTRACT

Adaptation of opportunistic pathogens to their host environment requires reprogramming of a vast array of genes to facilitate survival in the host. Burkholderia cenocepacia, a Gram-negative bacterium with a large genome of ∼8 Mb that colonizes environmental niches, is exquisitely adaptable to the hypoxic environment of the cystic fibrosis lung and survives in macrophages. We previously identified an immunoreactive acidic protein encoded on replicon 3, BCAS0292. Deletion of the BCAS0292 gene significantly altered the abundance of 979 proteins by 1.5-fold or more; 19 proteins became undetectable while 545 proteins showed ≥1.5-fold reduced abundance, suggesting the BCAS0292 protein is a global regulator. Moreover, the ∆BCAS0292 mutant showed a range of pleiotropic effects: virulence and host-cell attachment were reduced, antibiotic susceptibility was altered, and biofilm formation enhanced. Its growth and survival were impaired in 6% oxygen. In silico prediction of its three-dimensional structure revealed BCAS0292 presents a dimeric ß-structure with a negative surface charge. The ΔBCAS0292 mutant displayed altered DNA supercoiling, implicated in global regulation of gene expression. Three proteins were identified in pull-downs with FLAG-tagged BCAS0292, including the Histone H1-like protein, HctB, which is recognized as a global transcriptional regulator. We propose that BCAS0292 protein, which we have named Burkholderia negatively surface-charged regulatory protein 1 (Bnr1), acts as a DNA-mimic and binds to DNA-binding proteins, altering DNA topology and regulating the expression of multiple genes, thereby enabling the adaptation of B. cenocepacia to highly diverse environments.


Subject(s)
Adaptation, Physiological/physiology , Bacterial Proteins/physiology , Burkholderia cenocepacia/physiology , DNA, Bacterial/physiology , Molecular Mimicry/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia cenocepacia/genetics , Burkholderia cenocepacia/pathogenicity , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Multigene Family/genetics , Virulence
19.
Curr Med Chem ; 29(24): 4282-4292, 2022.
Article in English | MEDLINE | ID: mdl-35125077

ABSTRACT

BACKGROUND: Peptidoglycan is an essential component of the cell wall in all bacteria. In particular, the cell walls of Gram-positive bacteria are composed mostly of a thick layer of peptidoglycan. Its accessibility has important implications for their sensing in whole bacterial detection methodologies. Indeed, there is an urgent demand for rapid tests which can identify whole bacteria, e.g., directly at the point of care. OBJECTIVE: The aim of this work is to explore the suitability of RipA, a key cell division protein of M. tuberculosis, for whole cell biosensing of Gram-positive bacteria. METHODS: We here conducted Molecular Dynamics (MD) studies aimed at the understanding of the structural and dynamic features of active RipA and at the design of a suitable bioreceptor. Based on these studies, we engineered a RipA variant for covalent oriented immobilisation on golden surfaces and are able to bind peptidoglycan, albeit without degrading it. Surface Plasmon Resonance (SPR) was employed to check the ability of functionalized golden chips to recognize whole bacteria. RESULTS: MD analyses elucidated the structural details of the active form of RipA and suggested that this enzyme, once inactivated, presents a rigid and well-exposed peptidoglycan recognition cleft. We engineered RipA for proper oriented immobilisation on golden chips for SPR studies. Results show that once chemically coupled to a golden chip, the developed RipA-based bioreceptor is able to detect B. subtilis, used as a model in a concentration-dependent mode. CONCLUSION: Results highlight the potential of the engineered molecule to be integrated in the development of early warning biosensors for Gram-positive contamination in clinical diagnosis or food-borne infections.


Subject(s)
Bacterial Proteins , Endopeptidases , Mycobacterium tuberculosis , Bacterial Proteins/metabolism , Cell Wall/metabolism , Endopeptidases/metabolism , Hydrolases/metabolism , Mycobacterium tuberculosis/metabolism , Peptidoglycan/metabolism
20.
Biomolecules ; 11(12)2021 12 10.
Article in English | MEDLINE | ID: mdl-34944504

ABSTRACT

One of the most striking features of KCTD proteins is their involvement in apparently unrelated yet fundamental physio-pathological processes. Unfortunately, comprehensive structure-function relationships for this protein family have been hampered by the scarcity of the structural data available. This scenario is rapidly changing due to the release of the protein three-dimensional models predicted by AlphaFold (AF). Here, we exploited the structural information contained in the AF database to gain insights into the relationships among the members of the KCTD family with the aim of facilitating the definition of the structural and molecular basis of key roles that these proteins play in many biological processes. The most important finding that emerged from this investigation is the discovery that, in addition to the BTB domain, the vast majority of these proteins also share a structurally similar domain in the C-terminal region despite the absence of general sequence similarities detectable in this region. Using this domain as reference, we generated a novel and comprehensive structure-based pseudo-phylogenetic tree that unraveled previously undetected similarities among the protein family. In particular, we generated a new clustering of the KCTD proteins that will represent a solid ground for interpreting their many functions.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Humans , Models, Molecular , Phylogeny , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL