Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
Cell Death Discov ; 10(1): 12, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184644

ABSTRACT

Mammary gland development occurs primarily in adulthood, undergoing extensive expansion during puberty followed by cycles of functional specialization and regression with every round of pregnancy/lactation/involution. This process is ultimately driven by the coordinated proliferation and differentiation of mammary epithelial cells. However, the endogenous molecular factors regulating these developmental dynamics are still poorly defined. Endocannabinoid signaling is known to determine cell fate-related events during the development of different organs in the central nervous system and the periphery. Here, we report that the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) plays a pivotal role in adult mammary gland development. Specifically, it is required for luminal lineage specification in the mammary gland, and it promotes hormone-driven secretory differentiation of mammary epithelial cells by controlling the endogenous levels of anandamide and the subsequent activation of cannabinoid CB1 receptors. Together, our findings shed light on the role of the endocannabinoid system in breast development and point to FAAH as a therapeutic target in milk-production deficits.

2.
Curr Issues Mol Biol ; 45(12): 9904-9916, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38132464

ABSTRACT

Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.

3.
J Proteome Res ; 22(10): 3135-3148, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37672672

ABSTRACT

Procalcitonin (PCT) is a biomarker for bacterial sepsis, and accurate quantification of PCT is critical for sepsis diagnosis and treatment. Immunological PCT quantification methods are routinely used in clinical laboratories, yet there is a need for harmonization of PCT quantification protocols. An orthogonal method to clinical immunological assays, such as LC-MS/MS, is required. In this study, a highly sensitive and robust immunoaffinity LC-MRM quantitative method for detecting procalcitonin in human serum has been developed. An initial comparison of immunocapture of PCT with a polyclonal anti-PCT antibody immobilized on polystyrene nanoparticles (Latex) and magnetic beads demonstrated superior performance with magnetic beads. Three tryptic PCT peptides from the N- and C-terminal regions of PCT were selected for LC-MS/MS quantification. For PCT quantification, an LLOQ of 0.25 ng/mL of PCT in human serum was achieved using a sample volume of 1 mL. The method's trueness and precision consistently lie within the 15% margin. The parallel measurement of three PCT peptides may allow future differentiation of intact PCT vs other PCT forms originating from potential degradation, processing, or polymorphisms. An established and validated LC-MRM-based quantification of PCT will be relevant as an orthogonal method for harmonization and standardization of clinical assays for PCT.


Subject(s)
Procalcitonin , Sepsis , Humans , Procalcitonin/therapeutic use , Polystyrenes/therapeutic use , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Sepsis/diagnosis , Biomarkers , Antibodies , Peptides , Magnetic Phenomena
4.
BMC Cancer ; 23(1): 762, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587449

ABSTRACT

BACKGROUND: Glioblastoma patients commonly develop resistance to temozolomide chemotherapy. Hypoxia, which supports chemotherapy resistance, favors the expansion of glioblastoma stem cells (GSC), contributing to tumor relapse. Because of a deregulated sphingolipid metabolism, glioblastoma tissues contain high levels of the pro-survival sphingosine-1-phosphate and low levels of the pro-apoptotic ceramide. The latter can be metabolized to sphingosine-1-phosphate by sphingosine kinase (SK) 1 that is overexpressed in glioblastoma. The small molecule SKI-II inhibits SK and dihydroceramide desaturase 1, which converts dihydroceramide to ceramide. We previously reported that SKI-II combined with temozolomide induces caspase-dependent cell death, preceded by dihydrosphingolipids accumulation and autophagy in normoxia. In the present study, we investigated the effects of a low-dose combination of temozolomide and SKI-II under normoxia and hypoxia in glioblastoma cells and patient-derived GCSs. METHODS: Drug synergism was analyzed with the Chou-Talalay Combination Index method. Dose-effect curves of each drug were determined with the Sulforhodamine B colorimetric assay. Cell death mechanisms and autophagy were analyzed by immunofluorescence, flow cytometry and western blot; sphingolipid metabolism alterations by mass spectrometry and gene expression analysis. GSCs self-renewal capacity was determined using extreme limiting dilution assays and invasion of glioblastoma cells using a 3D spheroid model. RESULTS: Temozolomide resistance of glioblastoma cells was increased under hypoxia. However, combination of temozolomide (48 µM) with SKI-II (2.66 µM) synergistically inhibited glioblastoma cell growth and potentiated glioblastoma cell death relative to single treatments under hypoxia. This low-dose combination did not induce dihydrosphingolipids accumulation, but a decrease in ceramide and its metabolites. It induced oxidative and endoplasmic reticulum stress and triggered caspase-independent cell death. It impaired the self-renewal capacity of temozolomide-resistant GSCs, especially under hypoxia. Furthermore, it decreased invasion of glioblastoma cell spheroids. CONCLUSIONS: This in vitro study provides novel insights on the links between sphingolipid metabolism and invasion, a hallmark of cancer, and cancer stem cells, key drivers of cancer. It demonstrates the therapeutic potential of approaches that combine modulation of sphingolipid metabolism with first-line agent temozolomide in overcoming tumor growth and relapse by reducing hypoxia-induced resistance to chemotherapy and by targeting both differentiated and stem glioblastoma cells.


Subject(s)
Antineoplastic Agents , Glioblastoma , Humans , Glioblastoma/drug therapy , Temozolomide/pharmacology , Neoplasm Recurrence, Local , Cell Death , Neoplastic Processes , Sphingolipids
5.
Cancers (Basel) ; 15(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37509314

ABSTRACT

Lipidome dysregulation is a hallmark of cancer and inflammation. The global plasma lipidome and sub-lipidome of inflammatory pathways have not been reported in diffuse large B-cell lymphoma (DLBCL). In a pilot study of plasma lipid variation in female DLBCL patients and BMI-matched disease-free controls, we performed targeted lipidomics using LC-MRM to quantify lipid mediators of inflammation and immunity, and those known or hypothesised to be involved in cancer progression: sphingolipids, resolvin D1, arachidonic acid (AA)-derived oxylipins, such as hydroxyeicosatetraenoic acids (HETEs) and dihydroxyeicosatrienoic acids, along with their membrane structural precursors. We report on the role of the eicosanoids in the separation of DLBCL from controls, along with lysophosphatidylinositol LPI 20:4, implying notable changes in lipid metabolic and/or signalling pathways, particularly pertaining to AA lipoxygenase pathway and glycerophospholipid remodelling in the cell membrane. We suggest here the set of S1P, SM 36:1, SM 34:1 and PI 34:1 as DLBCL lipid signatures which could serve as a basis for the prospective validation in larger DLBCL cohorts. Additionally, untargeted lipidomics indicates a substantial change in the overall lipid metabolism in DLBCL. The plasma lipid profiling of DLBCL patients helps to better understand the specific lipid dysregulations and pathways in this cancer.

6.
Int J Mol Sci ; 24(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446139

ABSTRACT

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. The fast and accurate diagnosis of sepsis by procalcitonin (PCT) has emerged as an essential tool in clinical medicine. Although in use in the clinical laboratory for a long time, PCT quantification has not yet been standardized. The International Federation of Clinical Chemistry working group on the standardization of PCT (IFCC-WG PCT) aims to provide an LC-MS/MS-based reference method as well as the highest metrological order reference material to address this diagnostic need. Here, we present the systematic evaluation of the efficiency of an immuno-enrichment method, based on functionalized Sepharose, magnetic-core, or polystyrene (latex) nano-particles, to quantitatively precipitate PCT from different human sample materials. This method may be utilized for both mass spectrometric and proteomic purposes. In summary, only magnetic-core nano-particles functionalized by polyclonal PCT antibodies can fulfil the necessary requirements of the international standardization of PCT. An optimized method proved significant benefits in quantitative and specific precipitation as well as in the subsequent LC-MS/MS detection of PCT in human serum samples or HeLa cell extract. Based on this finding, further attempts of the PCT standardization process will utilize a magnetic core-derived immuno-enrichment step, combined with subsequent quantitative LC-MS/MS detection.


Subject(s)
Nanoparticles , Sepsis , Humans , Procalcitonin , Sepharose , Chromatography, Liquid , HeLa Cells , Polystyrenes , Proteomics , Tandem Mass Spectrometry , Sepsis/diagnosis , Antibodies , Magnetic Phenomena , Biomarkers
7.
Transl Psychiatry ; 13(1): 152, 2023 05 06.
Article in English | MEDLINE | ID: mdl-37149657

ABSTRACT

Anandamide (AEA) is an endogenous ligand of the cannabinoid CB1 and CB2 receptors, being a component of the endocannabinoid signaling system, which supports the maintenance or regaining of neural homeostasis upon internal and external challenges. AEA is thought to play a protective role against the development of pathological states after prolonged stress exposure, including depression and generalized anxiety disorder. Here, we used the chronic social defeat (CSD) stress as an ethologically valid model of chronic stress in male mice. We characterized a genetically modified mouse line where AEA signaling was reduced by deletion of the gene encoding the AEA synthesizing enzyme N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) specifically in neurons activated at the time of CSD stress. One week after the stress, the phenotype was assessed in behavioral tests and by molecular analyses. We found that NAPE-PLD deficiency in neurons activated during the last three days of CSD stress led to an increased anxiety-like behavior. Investigating the molecular mechanisms underlying this phenotype may suggest three main altered pathways to be affected: (i) desensitization of the negative feedback loop of the hypothalamic-pituitary-adrenal axis, (ii) disinhibition of the amygdala by the prefrontal cortex, and (iii) altered neuroplasticity in the hippocampus and prefrontal cortex.


Subject(s)
Hypothalamo-Hypophyseal System , Pituitary-Adrenal System , Male , Mice , Animals , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Polyunsaturated Alkamides/metabolism , Endocannabinoids/metabolism , Hippocampus/metabolism , Neurons/metabolism , Signal Transduction
8.
Nat Commun ; 14(1): 3130, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253733

ABSTRACT

Clinical management of breast cancer (BC) metastasis remains an unmet need as it accounts for 90% of BC-associated mortality. Although the luminal subtype, which represents >70% of BC cases, is generally associated with a favorable outcome, it is susceptible to metastatic relapse as late as 15 years after treatment discontinuation. Seeking therapeutic approaches as well as screening tools to properly identify those patients with a higher risk of recurrence is therefore essential. Here, we report that the lipid-degrading enzyme fatty acid amide hydrolase (FAAH) is a predictor of long-term survival in patients with luminal BC, and that it blocks tumor progression and lung metastasis in cell and mouse models of BC. Together, our findings highlight the potential of FAAH as a biomarker with prognostic value in luminal BC and as a therapeutic target in metastatic disease.


Subject(s)
Amidohydrolases , Biomarkers, Tumor , Lung Neoplasms , Animals , Mice , Amidohydrolases/genetics , Lung Neoplasms/pathology , Neoplasm Recurrence, Local/pathology
9.
Nat Commun ; 14(1): 937, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806650

ABSTRACT

Lipidomics encompassing automated lipid extraction, a four-dimensional (4D) feature selection strategy for confident lipid annotation as well as reproducible and cross-validated quantification can expedite clinical profiling. Here, we determine 4D descriptors (mass to charge, retention time, collision cross section, and fragmentation spectra) of 200 lipid standards and 493 lipids from reference plasma via trapped ion mobility mass spectrometry to enable the implementation of stringent criteria for lipid annotation. We use 4D lipidomics to confidently annotate 370 lipids in reference plasma samples and 364 lipids in serum samples, and reproducibly quantify 359 lipids using level-3 internal standards. We show the utility of our 4D lipidomics workflow for high-throughput applications by reliable profiling of intra-individual lipidome phenotypes in plasma, serum, whole blood, venous and finger-prick dried blood spots.


Subject(s)
Lipidomics , Lipids , Humans , Lipids/chemistry , Lipidomics/methods , Ion Mobility Spectrometry , Workflow
10.
Autophagy ; 19(7): 2146-2147, 2023 07.
Article in English | MEDLINE | ID: mdl-36416088

ABSTRACT

Autophagosome isolation enables the thorough investigation of structural components and engulfed materials. Recently, we introduced a novel antibody-based FACS-mediated method for isolation of native macroautophagic/autophagic vesicles and confirmed the quality of the preparations. We performed phospholipidomic and proteomic analyses to characterize autophagic vesicle-associated phospholipids and protein cargoes under different autophagy conditions. Lipidomic analyses identified phosphoglycerides and sphingomyelins within autophagic vesicles and revealed that the lipid composition was unaffected by different rates of autophagosome formation. Proteomic analyses identified more than 4500 potential autophagy substrates and showed that in comparison to autophagic vesicles isolated under basal autophagy conditions, starvation only marginally affected the cargo profile. Proteasome inhibition, however, resulted in the enhanced degradation of ubiquitin-proteasome system components. Taken together, the novel isolation method enriched large quantities of autophagic vesicles and enabled detailed analyses of their lipid and cargo composition.


Subject(s)
Autophagy , Proteasome Endopeptidase Complex , Autophagy/physiology , Proteasome Endopeptidase Complex/metabolism , Proteomics , Autophagosomes/metabolism , Lipids
11.
Methods Mol Biol ; 2576: 9-19, 2023.
Article in English | MEDLINE | ID: mdl-36152174

ABSTRACT

Extraction and quantification of endocannabinoids from biological tissues is essential to unravel their changes under physiological and pathophysiological conditions. We describe here an analytical protocol for the extraction of endocannabinoids, anandamide (archidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG), and endocannabinoid-like lipids such as palmitoyl ethanolamide (PEA) and oleoyl ethanolamide (OEA), as well as arachidonic acid (AA) from biological tissues using liquid-liquid extraction method and simultaneous quantification by liquid chromatography multiple reaction monitoring (LC/MRM).


Subject(s)
Endocannabinoids , Glycerol , Arachidonic Acid , Chromatography, Liquid/methods , Endocannabinoids/chemistry , Liquid-Liquid Extraction/methods
12.
J Cardiovasc Transl Res ; 16(2): 491-501, 2023 04.
Article in English | MEDLINE | ID: mdl-36178662

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) is an inflammatory mediator and ligand for the cannabinoid receptors CB1 and CB2. We investigated the atherogenic mechanisms set in motion by 2-AG. Therefore, we created two atherosclerotic mouse models with distinct cell-specific knockouts of the CB2 receptor on either myeloid or endothelial cells. These mice were treated with JZL184, resulting in elevated plasma levels of 2-AG. After a high-fat high-cholesterol diet, atherosclerotic plaques were analyzed. The atherogenic effect of 2-AG was abrogated in mice lacking myeloid expression of the CB2 receptor but not in mice lacking endothelial expression of the CB2 receptor. In vitro, treatment of human monocytes with 2-AG led to the increased production of reactive oxygen species (ROS) and IL-1ß. In conclusion, 2-AG shows an atherogenic effect in vivo, dependent on the presence of the CB2 receptor on myeloid cells. In addition, our in vitro data revealed 2-AG to promote inflammatory signalling in monocytes. 2-Arachidonoylglycerol shows an atherogenic effect that is abrogated in mice lacking myeloid expression of the CB2 receptor.


Subject(s)
Atherosclerosis , Endocannabinoids , Mice , Humans , Animals , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB2 , Endothelial Cells/metabolism , Atherosclerosis/metabolism
13.
Nat Cardiovasc Res ; 1: 1056-1071, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36523570

ABSTRACT

Dissecting the pathways regulating the adaptive immune response in atherosclerosis is of particular therapeutic interest. Here we report that the lipid G-protein coupled receptor GPR55 is highly expressed by splenic plasma cells (PC), upregulated in mouse spleens during atherogenesis and human unstable or ruptured compared to stable plaques. Gpr55-deficient mice developed larger atherosclerotic plaques with increased necrotic core size compared to their corresponding controls. Lack of GPR55 hyperactivated B cells, disturbed PC maturation and resulted in immunoglobulin (Ig)G overproduction. B cell-specific Gpr55 depletion or adoptive transfer of Gpr55-deficient B cells was sufficient to promote plaque development and elevated IgG titers. In vitro, the endogenous GPR55 ligand lysophsophatidylinositol (LPI) enhanced PC proliferation, whereas GPR55 antagonism blocked PC maturation and increased their mitochondrial content. Collectively, these discoveries provide previously undefined evidence for GPR55 in B cells as a key modulator of the adaptive immune response in atherosclerosis.

14.
Nat Commun ; 13(1): 6941, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396957

ABSTRACT

Chronic obstructive airway diseases are a global medical burden that is expected to increase in the near future. However, the underlying mechanistic processes are poorly understood so far. Herein, we show that the endocannabinoid anandamide (AEA) induces prominent airway relaxation in vitro and in vivo. In contrast to 2-arachidonlyglycerol-induced airway relaxation, this is mediated by fatty acid amide hydrolase (FAAH)-dependent metabolites. In particular, we identify mouse and also human epithelial and airway smooth muscle cells as source of AEA-induced prostaglandin E2 production and cAMP as direct mediator of AEA-dependent airway relaxation. Mass spectrometry experiments demonstrate reduced levels of endocannabinoid-like compounds in lungs of ovalbumin-sensitized mice indicating a pathophysiological relevance of endocannabinoid signalling in obstructive airway disease. Importantly, AEA inhalation protects against airway hyper-reactivity after ovalbumin sensitization. Thus, this work highlights the AEA/FAAH axis as a critical regulator of airway tone that could provide therapeutic targets for airway relaxation.


Subject(s)
Arachidonic Acids , Endocannabinoids , Animals , Mice , Humans , Endocannabinoids/metabolism , Ovalbumin , Arachidonic Acids/metabolism , Polyunsaturated Alkamides/metabolism
15.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36293543

ABSTRACT

Ischemic cardiomyopathy leads to inflammation and left ventricular (LV) dysfunction. Animal studies provided evidence for cardioprotective effects of the endocannabinoid system, including cardiomyocyte adaptation, inflammation, and remodeling. Cannabinoid type-2 receptor (CB2) deficiency led to increased apoptosis and infarctions with worsened LV function in ischemic cardiomyopathy. The aim of our study was to investigate a possible cardioprotective effect of endocannabinoid anandamide (AEA) after ischemia and reperfusion (I/R). Therefore, fatty acid amide hydrolase deficient (FAAH)-/- mice were subjected to repetitive, daily, 15 min, left anterior descending artery (LAD) occlusion over 3 and 7 consecutive days. Interestingly, FAAH-/- mice showed stigmata such as enhanced inflammation, cardiomyocyte loss, stronger remodeling, and persistent scar with deteriorated LV function compared to wild-type (WT) littermates. As endocannabinoids also activate PPAR-α (peroxisome proliferator-activated receptor), PPAR-α mediated effects of AEA were eliminated with PPAR-α antagonist GW6471 i.v. in FAAH-/- mice. LV function was assessed using M-mode echocardiography. Immunohistochemical analysis revealed apoptosis, macrophage accumulation, collagen deposition, and remodeling. Hypertrophy was determined by cardiomyocyte area and heart weight/tibia length. Molecular analyses involved Taqman® RT-qPCR and immune cells were analyzed with fluorescence-activated cell sorting (FACS). Most importantly, collagen deposition was reduced to WT levels when FAAH-/- mice were treated with GW6471. Chemokine ligand-2 (CCL2) expression was significantly higher in FAAH-/- mice compared to WT, followed by higher macrophage infiltration in infarcted areas, both being reversed by GW6471 treatment. Besides restoring antioxidative properties and contractile elements, PPAR-α antagonism also reversed hypertrophy and remodeling in FAAH-/- mice. Finally, FAAH-/--mice showed more substantial downregulation of PPAR-α compared to WT, suggesting a compensatory mechanism as endocannabinoids are also ligands for PPAR-α, and its activation causes lipotoxicity leading to cardiomyocyte apoptosis. Our study gives novel insights into the role of endocannabinoids acting via PPAR-α. We hypothesize that the increase in endocannabinoids may have partially detrimental effects on cardiomyocyte survival due to PPAR-α activation.


Subject(s)
Cannabinoids , Cardiomyopathies , Coronary Artery Disease , Myocardial Ischemia , Ventricular Dysfunction, Left , Mice , Animals , Endocannabinoids/metabolism , Ligands , Amidohydrolases/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Receptors, Cannabinoid , PPAR alpha/metabolism , Ventricular Dysfunction, Left/metabolism , Inflammation , Reperfusion , Collagen , Hypertrophy
16.
Epilepsia Open ; 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36259125

ABSTRACT

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. This is the second in a two-part series of omics papers, with the other including genomics, transcriptomics, and epigenomics. The aim of the CDEs was to improve the standardization of experimental designs across a range of epilepsy research-related methods. We have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for proteomics, lipidomics, and metabolomics of samples from rodent models and people with epilepsy. We discuss the important elements that need to be considered for the proteomics, lipidomics, and metabolomics methodologies, providing a rationale for the parameters that should be documented.

17.
EMBO Rep ; 23(12): e53065, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36215690

ABSTRACT

Autophagy is responsible for clearance of an extensive portfolio of cargoes, which are sequestered into vesicles, called autophagosomes, and are delivered to lysosomes for degradation. The pathway is highly dynamic and responsive to several stress conditions. However, the phospholipid composition and protein contents of human autophagosomes under changing autophagy rates are elusive so far. Here, we introduce an antibody-based FACS-mediated approach for the isolation of native autophagic vesicles and ensured the quality of the preparations. Employing quantitative lipidomics, we analyze phospholipids present within human autophagic vesicles purified upon basal autophagy, starvation, and proteasome inhibition. Importantly, besides phosphoglycerides, we identify sphingomyelin within autophagic vesicles and show that the phospholipid composition is unaffected by the different conditions. Employing quantitative proteomics, we obtain cargo profiles of autophagic vesicles isolated upon the different treatment paradigms. Interestingly, starvation shows only subtle effects, while proteasome inhibition results in the enhanced presence of ubiquitin-proteasome pathway factors within autophagic vesicles. Thus, here we present a powerful method for the isolation of native autophagic vesicles, which enabled profound phospholipid and cargo analyses.


Subject(s)
Proteasome Endopeptidase Complex , Proteomics , Humans , Autophagy , Phospholipids
18.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142165

ABSTRACT

Endocannabinoid (eCB) signaling is markedly decreased in the hippocampus (Hip) of aged mice, and the genetic deletion of the cannabinoid receptor type 1 (CB1) leads to an early onset of cognitive decline and age-related histological changes in the brain. Thus, it is hypothesized that cognitive aging is modulated by eCB signaling through CB1. In the present study, we detailed the changes in the eCB system during the aging process using different complementary techniques in mouse brains of five different age groups, ranging from adolescence to old age. Our findings indicate that the eCB system is most strongly affected in middle-aged mice (between 9 and 12 months of age) in a brain region-specific manner. We show that 2-arachidonoylglycerol (2-AG) was prominently decreased in the Hip and moderately in caudate putamen (CPu), whereas anandamide (AEA) was decreased in both CPu and medial prefrontal cortex along with cingulate cortex (mPFC+Cg), starting from 6 months until 12 months. Consistent with the changes in 2-AG, the 2-AG synthesizing enzyme diacylglycerol lipase α (DAGLα) was also prominently decreased across the sub-regions of the Hip. Interestingly, we found a transient increase in CB1 immunoreactivity across the sub-regions of the Hip at 9 months, a plausible compensation for reduced 2-AG, which ultimately decreased strongly at 12 months. Furthermore, quantitative autoradiography of CB1 revealed that [3H]CP55940 binding markedly increased in the Hip at 9 months. However, unlike the protein levels, CB1 binding density did not drop strongly at 12 months and at old age. Furthermore, [3H]CP55940 binding was significantly increased in the lateral entorhinal cortex (LEnt), starting from the middle age until the old age. Altogether, our findings clearly indicate a middle-age crisis in the eCB system, which could be a potential time window for therapeutic interventions to abrogate the course of cognitive aging.


Subject(s)
Endocannabinoids , Lipoprotein Lipase , Aging , Animals , Cyclohexanols , Endocannabinoids/metabolism , Lipoprotein Lipase/genetics , Mice , Receptor, Cannabinoid, CB1/genetics , Receptors, Cannabinoid
19.
J Lipid Res ; 63(11): 100283, 2022 11.
Article in English | MEDLINE | ID: mdl-36152882

ABSTRACT

Intrauterine growth restriction (IUGR) predisposes to chronic kidney disease via activation of proinflammatory pathways, and omega-3 PUFAs (n-3 PUFAs) have anti-inflammatory properties. In female rats, we investigated 1) how an elevated dietary n-3/n-6 PUFA ratio (1:1) during postnatal kidney development modifies kidney phospholipid (PL) and arachidonic acid (AA) metabolite content and 2) whether the diet counteracts adverse molecular protein signatures expected in IUGR kidneys. IUGR was induced by bilateral uterine vessel ligation or intrauterine stress through sham operation 3.5 days before term. Control (C) offspring were born after uncompromised pregnancy. On postnatal (P) days P2-P39, rats were fed control (n-3/n-6 PUFA ratio 1:20) or n-3 PUFA intervention diet (N3PUFA; ratio 1:1). Plasma parameters (P33), kidney cortex lipidomics and proteomics, as well as histology (P39) were studied. We found that the intervention diet tripled PL-DHA content (PC 40:6; P < 0.01) and lowered both PL-AA content (PC 38:4 and lyso-phosphatidylcholine 20:4; P < 0.05) and AA metabolites (HETEs, dihydroxyeicosatrienoic acids, and epoxyeicosatrienoic acids) to 25% in all offspring groups. After ligation, our network analysis of differentially expressed proteins identified an adverse molecular signature indicating inflammation and hypercoagulability. N3PUFA diet reversed 61 protein alterations (P < 0.05), thus mitigating adverse IUGR signatures. In conclusion, an elevated n-3/n-6 PUFA ratio in early diet strongly reduces proinflammatory PLs and mediators while increasing DHA-containing PLs regardless of prior intrauterine conditions. Counteracting a proinflammatory hypercoagulable protein signature in young adult IUGR individuals through early diet intervention may be a feasible strategy to prevent developmentally programmed kidney damage in later life.


Subject(s)
Fatty Acids, Omega-3 , Pregnancy , Humans , Animals , Rats , Female , Fatty Acids, Omega-3/pharmacology , Diet , Phospholipids , Arachidonic Acid , Fetal Growth Retardation/metabolism , Kidney/metabolism
20.
Epilepsia Open ; 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35950645

ABSTRACT

The International League Against Epilepsy/American Epilepsy Society (ILAE/AES) Joint Translational Task Force established the TASK3 working groups to create common data elements (CDEs) for various preclinical epilepsy research disciplines. The aim of the CDEs is to improve the standardization of experimental designs across a range of epilepsy research-related methods. Here, we have generated CDE tables with key parameters and case report forms (CRFs) containing the essential contents of the study protocols for genomics, transcriptomics, and epigenomics in rodent models of epilepsy, with a specific focus on adult rats and mice. We discuss the important elements that need to be considered for genomics, transcriptomics, and epigenomics methodologies, providing a rationale for the parameters that should be collected. This is the first in a two-part series of omics papers with the second installment to cover proteomics, lipidomics, and metabolomics in adult rodents.

SELECTION OF CITATIONS
SEARCH DETAIL