Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 206
Filter
1.
Clin Genet ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863195

ABSTRACT

Biallelic variants in SUMF1 are associated with multiple sulfatase deficiency (MSD), a rare lysosomal storage disorder typically diagnosed in early infancy or childhood, marked by severe neurodegeneration and early mortality. We present clinical and molecular characterisation of three unrelated patients aged 13 to 58 years with milder clinical manifestations due to SUMF1 disease variants, including two adult patients presenting with apparent non-syndromic retinal dystrophy. Whole genome sequencing identified biallelic SUMF1 variants in all three patients; Patient 1 homozygous for a complex allele c.[290G>T;293T>A]; p.[(Gly97Val);(Val98Glu)], Patient 2 homozygous for c.866A>G; p.(Tyr289Cys), and Patient 3 compound heterozygous for c.726-1G>C and p.(Tyr289Cys). Electroretinography indicated a rod-cone dystrophy with additional possible inner retinal dysfunction in all three patients. Biochemical studies confirmed reduced, but not absent, sulfatase enzyme activity in the absence of extra-ocular disease (Patient 1) or only mild systemic disease (Patients 2, 3). These cases are suggestive that non-null SUMF1 genotypes can cause an attenuated clinical phenotype, including retinal dystrophy without systemic complications, in adulthood.

2.
PLoS One ; 19(6): e0303057, 2024.
Article in English | MEDLINE | ID: mdl-38843256

ABSTRACT

As adoptive cellular therapies become more commonplace in cancer care, there is a growing need to monitor site-specific localization of engineered cells-such as chimeric antigen receptor T (CAR-T) cells and T-cell receptor T (TCR-T) cells-in patients' tissues to understand treatment effectiveness as well as associated adverse events. Manufacturing CAR-T and TCR-T cells involves transduction with viral vectors commonly containing the WPRE gene sequence to enhance gene expression, providing a viable assay target unique to these engineered cells. Quantitative PCR (qPCR) is currently used clinically in fresh patient tissue samples and blood with target sequences specific to each immunotherapy product. Herein, we developed a WPRE-targeted qPCR assay that is broadly applicable for detection of engineered cell products in both fresh and archival formalin-fixed paraffin embedded (FFPE) tissues. Using both traditional PCR and SYBR Green PCR protocols, we demonstrate the use of this WPRE-targeted assay to successfully detect two CAR-T cell and two TCR-T cell products in FFPE tissue. Standard curve analysis reported a reproducible limit of detection at 100 WPRE copies per 20µL PCR reaction. This novel and inexpensive technique could provide better understanding of tissue abundance of engineered therapeutic T cells in both tumor and second-site toxicity tissues and provide quantitative assessment of immune effector cell trafficking in archival tissue.


Subject(s)
Formaldehyde , Hepatitis B Virus, Woodchuck , Receptors, Antigen, T-Cell , Humans , Hepatitis B Virus, Woodchuck/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tissue Fixation/methods , Immunotherapy, Adoptive/methods , Real-Time Polymerase Chain Reaction/methods
3.
Eur J Hum Genet ; 32(8): 1005-1013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849599

ABSTRACT

The PAX6 gene encodes a highly-conserved transcription factor involved in eye development. Heterozygous loss-of-function variants in PAX6 can cause a range of ophthalmic disorders including aniridia. A key molecular diagnostic challenge is that many PAX6 missense changes are presently classified as variants of uncertain significance. While computational tools can be used to assess the effect of genetic alterations, the accuracy of their predictions varies. Here, we evaluated and optimised the performance of computational prediction tools in relation to PAX6 missense variants. Through inspection of publicly available resources (including HGMD, ClinVar, LOVD and gnomAD), we identified 241 PAX6 missense variants that were used for model training and evaluation. The performance of ten commonly used computational tools was assessed and a threshold optimization approach was utilized to determine optimal cut-off values. Validation studies were subsequently undertaken using PAX6 variants from a local database. AlphaMissense, SIFT4G and REVEL emerged as the best-performing predictors; the optimized thresholds of these tools were 0.967, 0.025, and 0.772, respectively. Combining the prediction from these top-three tools resulted in lower performance compared to using AlphaMissense alone. Tailoring the use of computational tools by employing optimized thresholds specific to PAX6 can enhance algorithmic performance. Our findings have implications for PAX6 variant interpretation in clinical settings.


Subject(s)
Mutation, Missense , PAX6 Transcription Factor , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Humans , Computational Biology/methods , Software
4.
J Med Genet ; 61(7): 689-698, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38458752

ABSTRACT

BACKGROUND: Plexins are large transmembrane receptors for the semaphorin family of signalling proteins. Semaphorin-plexin signalling controls cellular interactions that are critical during development as well as in adult life stages. Nine plexin genes have been identified in humans, but despite the apparent importance of plexins in development, only biallelic PLXND1 and PLXNA1 variants have so far been associated with Mendelian genetic disease. METHODS: Eight individuals from six families presented with a recessively inherited variable clinical condition, with core features of amelogenesis imperfecta (AI) and sensorineural hearing loss (SNHL), with variable intellectual disability. Probands were investigated by exome or genome sequencing. Common variants and those unlikely to affect function were excluded. Variants consistent with autosomal recessive inheritance were prioritised. Variant segregation analysis was performed by Sanger sequencing. RNA expression analysis was conducted in C57Bl6 mice. RESULTS: Rare biallelic pathogenic variants in plexin B2 (PLXNB2), a large transmembrane semaphorin receptor protein, were found to segregate with disease in all six families. The variants identified include missense, nonsense, splicing changes and a multiexon deletion. Plxnb2 expression was detected in differentiating ameloblasts. CONCLUSION: We identify rare biallelic pathogenic variants in PLXNB2 as a cause of a new autosomal recessive, phenotypically diverse syndrome with AI and SNHL as core features. Intellectual disability, ocular disease, ear developmental abnormalities and lymphoedema were also present in multiple cases. The variable syndromic human phenotype overlaps with that seen in Plxnb2 knockout mice, and, together with the rarity of human PLXNB2 variants, may explain why pathogenic variants in PLXNB2 have not been reported previously.


Subject(s)
Amelogenesis Imperfecta , Intellectual Disability , Pedigree , Humans , Animals , Male , Female , Mice , Intellectual Disability/genetics , Intellectual Disability/pathology , Amelogenesis Imperfecta/genetics , Amelogenesis Imperfecta/pathology , Receptors, Cell Surface/genetics , Nerve Tissue Proteins/genetics , Alleles , Child , Hearing Loss/genetics , Hearing Loss/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Adult , Mutation/genetics , Adolescent , Child, Preschool , Phenotype
5.
J Int Adv Otol ; 19(6): 454-460, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38088316

ABSTRACT

ACKGROUND: There is a need to operationalize existing clinical data to support precision medicine in progressive hearing loss (HL). By utilizing enlarged vestibular aqueduct (EVA) and its associated inner ear abnormalities as an exemplar, we model data from a large international cohort, confirm prognostic factors for HL, and explore the potential to generate a prediction model to optimize current management paradigms. METHODS: An international retrospective cohort study. Regression analyses were utilized to model frequency-specific HL and identify prognostic factors for baseline average HL severity and progression. Elastic-net regression and machine learning (ML) techniques were utilized to predict future average HL progression based upon routinely measurable clinical, genetic, and radiological data. RESULTS: Higher frequencies of hearing were lost more severely. Prognostic factors for HL were the presence of incomplete partition type 2 (coefficient 12.95 dB, P=.011, 95% CI 3.0-22 dB) and presence of sac signal heterogeneity (P=.009, 95% CI 0.062-0.429) on magnetic resonance imaging. Elastic-net regression outperformed the ML algorithms (R2 0.32, mean absolute error 11.05 dB) with coefficients for baseline average hearing level and the presence of sac heterogeneity contributing the most to prediction outcomes. CONCLUSION: Incomplete partition type 2 and endolymphatic sac signal heterogeneity phenotypes should be monitored closely for hearing deterioration and need for early audiological rehabilitation/cochlear implant. Preliminary prediction models have been generated using routinely collected health data in EVA. This study showcases how international collaborative research can use exemplar techniques to improve precision medicine in relatively rare disease entities.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Hearing Loss , Vestibular Aqueduct , Humans , Retrospective Studies , Prognosis , Hearing Loss/pathology , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/pathology , Vestibular Aqueduct/diagnostic imaging , Vestibular Aqueduct/pathology
6.
JAMA Oncol ; 9(12): 1660-1668, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824131

ABSTRACT

Importance: Metastatic soft tissue sarcomas (STSs) have limited systemic therapy options, and immunomodulation has not yet meaningfully improved outcomes. Intratumoral (IT) injection of the toll-like receptor 4 (TLR4) agonist glycopyranosyl lipid A in stable-emulsion formulation (GLA-SE) has been studied as immunotherapy in other contexts. Objective: To evaluate the safety, efficacy, and immunomodulatory effects of IT GLA-SE with concurrent radiotherapy in patients with metastatic STS with injectable lesions. Design, Setting, and Participants: This phase 1 nonrandomized controlled trial of patients with STS was performed at a single academic sarcoma specialty center from November 17, 2014, to March 16, 2016. Data analysis was performed from August 2016 to September 2022. Interventions: Two doses of IT GLA-SE (5 µg and 10 µg for 8 weekly doses) were tested for safety in combination with concurrent radiotherapy of the injected lesion. Main Outcomes and Measures: Primary end points were safety and tolerability. Secondary and exploratory end points included local response rates as well as measurement of antitumor immunity with immunohistochemistry and T-cell receptor (TCR) sequencing of tumor-infiltrating and circulating lymphocytes. Results: Twelve patients (median [range] age, 65 [34-78] years; 8 [67%] female) were treated across the 2 dose cohorts. Intratumoral GLA-SE was well tolerated, with only 1 patient (8%) experiencing a grade 2 adverse event. All patients achieved local control of the injected lesion after 8 doses, with 1 patient having complete regression (mean regression, -25%; range, -100% to 4%). In patients with durable local response, there were detectable increases in tumor-infiltrating lymphocytes. In 1 patient (target lesion -39% at 259 days of follow-up), TCR sequencing revealed expansion of preexisting and de novo clonotypes, with convergence of numerous rearrangements coding for the same binding sequence (suggestive of clonal convergence to antitumor targets). Single-cell sequencing identified these same expanded TCR clones in peripheral blood after treatment; these T cells had markedly enhanced Tbet expression, suggesting TH1 phenotype. Conclusions and Relevance: In this nonrandomized controlled trial, IT GLA-SE with concurrent radiotherapy was well tolerated and provided more durable local control than radiotherapy alone. Patients with durable local response demonstrated enhanced IT T-cell clonal expansion, with matched expansion of these clonotypes in the circulation. Additional studies evaluating synergism of IT GLA-SE and radiotherapy with systemic immune modulation are warranted. Trial Registration: ClinicalTrials.gov Identifier: NCT02180698.


Subject(s)
Sarcoma , Soft Tissue Neoplasms , Humans , Female , Aged , Male , Toll-Like Receptor 4/agonists , T-Lymphocytes , Soft Tissue Neoplasms/drug therapy , Soft Tissue Neoplasms/radiotherapy , Sarcoma/drug therapy , Sarcoma/radiotherapy , Receptors, Antigen, T-Cell
7.
Orphanet J Rare Dis ; 18(1): 265, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667371

ABSTRACT

BACKGROUND: Gyrate atrophy of the choroid and retina is a rare autosomal recessive metabolic disorder caused by biallelic variants in the OAT gene, encoding the enzyme ornithine δ-aminotransferase. Impaired enzymatic activity leads to systemic hyperornithinaemia, which in turn underlies progressive chorioretinal degeneration. In this study, we describe the clinical and molecular findings in a cohort of individuals with gyrate atrophy. METHODS: Study participants were recruited through a tertiary UK clinical ophthalmic genetic service. All cases had a biochemical and molecular diagnosis of gyrate atrophy. Retrospective phenotypic and biochemical data were collected using electronic healthcare records. RESULTS: 18 affected individuals from 12 families (8 male, 10 female) met the study inclusion criteria. The median age at diagnosis was 8 years (range 10 months - 33 years) and all cases had hyperornithinaemia (median: 800 micromoles/L; range: 458-1244 micromoles/L). Common features at presentation included high myopia (10/18) and nyctalopia (5/18). Ophthalmic findings were present in all study participants who were above the age of 6 years. One third of patients had co-existing macular oedema and two thirds developed pre-senile cataracts. Compliance with dietary modifications was suboptimal in most cases. A subset of participants had extraocular features including a trend towards reduced fat-free mass and developmental delay. CONCLUSIONS: Our findings highlight the importance of multidisciplinary care in families with gyrate atrophy. Secondary ophthalmic complications such as macular oedema and cataract formation are common. Management of affected individuals remains challenging due to the highly restrictive nature of the recommended diet and the limited evidence-base for current strategies.


Subject(s)
Cataract , Gyrate Atrophy , Macular Edema , Humans , Female , Male , Infant , Child , Gyrate Atrophy/genetics , Retrospective Studies , Retina
8.
J Med Genet ; 60(12): 1245-1249, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37460203

ABSTRACT

Albinism is a clinically and genetically heterogeneous group of conditions characterised by visual abnormalities and variable degrees of hypopigmentation. Multiple studies have demonstrated the clinical utility of genetic investigations in individuals with suspected albinism. Despite this, the variation in the provision of genetic testing for albinism remains significant. One key issue is the lack of a standardised approach to the analysis of genomic data from affected individuals. For example, there is variation in how different clinical genetic laboratories approach genotypes that involve incompletely penetrant alleles, including the common, 'hypomorphic' TYR c.1205G>A (p.Arg402Gln) [rs1126809] variant. Here, we discuss the value of genetic testing as a frontline diagnostic tool in individuals with features of albinism and propose a practice pattern for the analysis of genomic data from affected families.


Subject(s)
Albinism, Oculocutaneous , Albinism , Humans , Albinism/genetics , Albinism/diagnosis , Albinism, Oculocutaneous/diagnosis , Albinism, Oculocutaneous/genetics , Genetic Testing , Genotype , Alleles
10.
Sci Rep ; 13(1): 9984, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340071

ABSTRACT

Primary open angle glaucoma (POAG) is a chronic, adult-onset optic neuropathy associated with characteristic optic disc and/or visual field changes. With a view to identifying modifiable risk factors for this common neurodegenerative condition, we performed a 'phenome-wide' univariable Mendelian randomisation (MR) study that involved analysing the relationship between 9661 traits and POAG. Utilised analytical approaches included weighted mode based estimation, the weighted median method, the MR Egger method and the inverse variance weighted (IVW) approach. Eleven traits related to POAG risk were identified including: serum levels of the angiopoietin-1 receptor (OR [odds ratio] = 1.11, IVW p = 2.34E-06) and the cadherin 5 protein (OR = 1.06, IVW p = 1.31E-06); intraocular pressure (OR = 2.46-3.79, IVW p = 8.94E-44-3.00E-27); diabetes (OR = 5.17, beta = 1.64, IVW p = 9.68E-04); and waist circumference (OR = 0.79, IVW p = 1.66E-05). Future research focussing on the effects of adiposity, cadherin 5 and angiopoietin-1 receptor on POAG development and progression is expected to provide key insights that might inform the provision of lifestyle modification advice and/or the development of novel therapies.


Subject(s)
Angiopoietin-1 , Glaucoma, Open-Angle , Adult , Humans , Glaucoma, Open-Angle/epidemiology , Glaucoma, Open-Angle/genetics , Causality , Phenomics , Phenotype , Mendelian Randomization Analysis , Genome-Wide Association Study , Polymorphism, Single Nucleotide
11.
Clin Genet ; 104(4): 418-426, 2023 10.
Article in English | MEDLINE | ID: mdl-37321975

ABSTRACT

Four members of a three-generation Czech family with early-onset chorioretinal dystrophy were shown to be heterozygous carriers of the n.37C>T in MIR204. The identification of this previously reported pathogenic variant confirms the existence of a distinct clinical entity caused by a sequence change in MIR204. Chorioretinal dystrophy was variably associated with iris coloboma, congenital glaucoma, and premature cataracts extending the phenotypic range of the condition. In silico analysis of the n.37C>T variant revealed 713 novel targets. Additionally, four family members were shown to be affected by albinism resulting from biallelic pathogenic OCA2 variants. Haplotype analysis excluded relatedness with the original family reported to harbour the n.37C>T variant in MIR204. Identification of a second independent family confirms the existence of a distinct MIR204-associated clinical entity and suggests that the phenotype may also involve congenital glaucoma.


Subject(s)
Cataract , Coloboma , Glaucoma , MicroRNAs , Humans , Coloboma/complications , Coloboma/genetics , Mutation , Pedigree , Iris/abnormalities , Glaucoma/complications , Glaucoma/genetics , Cataract/genetics , Cataract/congenital
12.
Retina ; 43(9): e53, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37155940
13.
Front Cell Dev Biol ; 11: 1161548, 2023.
Article in English | MEDLINE | ID: mdl-37206923

ABSTRACT

Pathogenic, generally loss-of-function, variants in CACNA1F, encoding the Cav1.4α1 calcium channel, underlie congenital stationary night blindness type 2 (CSNB2), a rare inherited retinal disorder associated with visual disability. To establish the underlying pathomechanism, we investigated 10 clinically derived CACNA1F missense variants located across pore-forming domains, connecting loops, and the carboxy-tail domain of the Cav1.4α subunit. Homology modeling showed that all variants cause steric clashes; informatics analysis correctly predicted pathogenicity for 7/10 variants. In vitro analyses demonstrated that all variants cause a decrease in current, global expression, and protein stability and act through a loss-of-function mechanism and suggested that the mutant Cav1.4α proteins were degraded by the proteasome. We showed that the reduced current for these variants could be significantly increased through treatment with clinical proteasome inhibitors. In addition to facilitating clinical interpretation, these studies suggest that proteasomal inhibition represents an avenue of potential therapeutic intervention for CSNB2.

14.
Genes (Basel) ; 14(4)2023 03 25.
Article in English | MEDLINE | ID: mdl-37107549

ABSTRACT

Non-traumatic ectopia lentis can be isolated or herald an underlying multisystemic disorder. Technological advances have revolutionized genetic testing for many ophthalmic disorders, and this study aims to provide insights into the clinical utility of genetic analysis in paediatric ectopia lentis. Children that underwent lens extraction for ectopia lentis between 2013 and 2017 were identified, and gene panel testing findings and surgical outcomes were collected. Overall, 10/11 cases received a probable molecular diagnosis. Genetic variants were identified in four genes: FBN1 (associated with Marfan syndrome and cardiovascular complications; n = 6), ADAMTSL4 (associated with non-syndromic ectopia lentis; n = 2), LTBP2 (n = 1) and ASPH (n = 1). Parents appeared unaffected in 6/11 cases; the initial presentation of all six of these children was to an ophthalmologist, and only 2/6 had FBN1 variants. Notably, 4/11 cases required surgery before the age of 4 years, and only one of these children carried an FBN1 variant. In summary, in this retrospective cohort study, panel-based genetic testing pointed to a molecular diagnosis in >90% of paediatric ectopia lentis cases requiring surgery. In a subset of study participants, genetic analysis revealed changes in genes that have not been linked to extraocular manifestations and highlighted that extensive systemic investigations were not required in these individuals. We propose the introduction of genetic testing early in the diagnostic pathway in children with ectopia lentis.


Subject(s)
Ectopia Lentis , Lens, Crystalline , Marfan Syndrome , Humans , Child , Child, Preschool , Ectopia Lentis/genetics , Ectopia Lentis/surgery , Retrospective Studies , Genetic Testing , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Marfan Syndrome/surgery , Latent TGF-beta Binding Proteins/genetics
15.
Elife ; 122023 01 27.
Article in English | MEDLINE | ID: mdl-36705323

ABSTRACT

Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the industrialised world and is projected to affect >280 million people worldwide by 2040. Aiming to identify causal factors and potential therapeutic targets for this common condition, we designed and undertook a phenome-wide Mendelian randomisation (MR) study. Methods: We evaluated the effect of 4591 exposure traits on early AMD using univariable MR. Statistically significant results were explored further using: validation in an advanced AMD cohort; MR Bayesian model averaging (MR-BMA); and multivariable MR. Results: Overall, 44 traits were found to be putatively causal for early AMD in univariable analysis. Serum proteins that were found to have significant relationships with AMD included S100-A5 (odds ratio [OR] = 1.07, p-value = 6.80E-06), cathepsin F (OR = 1.10, p-value = 7.16E-05), and serine palmitoyltransferase 2 (OR = 0.86, p-value = 1.00E-03). Univariable MR analysis also supported roles for complement and immune cell traits. Although numerous lipid traits were found to be significantly related to AMD, MR-BMA suggested a driving causal role for serum sphingomyelin (marginal inclusion probability [MIP] = 0.76; model-averaged causal estimate [MACE] = 0.29). Conclusions: The results of this MR study support several putative causal factors for AMD and highlight avenues for future translational research. Funding: This project was funded by the Wellcome Trust (224643/Z/21/Z; 200990/Z/16/Z); the University of Manchester's Wellcome Institutional Strategic Support Fund (Wellcome ISSF) grant (204796/Z/16/Z); the UK National Institute for Health Research (NIHR) Academic Clinical Fellow and Clinical Lecturer Programmes; Retina UK and Fight for Sight (GR586); the Australian National Health and Medical Research Council (NHMRC) (1150144).


Subject(s)
Macular Degeneration , Humans , Risk Factors , Bayes Theorem , Australia , Macular Degeneration/genetics , Causality , Genome-Wide Association Study , Polymorphism, Single Nucleotide
16.
J Med Genet ; 60(8): 810-818, 2023 08.
Article in English | MEDLINE | ID: mdl-36669873

ABSTRACT

BACKGROUND: Genomic variant prioritisation is one of the most significant bottlenecks to mainstream genomic testing in healthcare. Tools to improve precision while ensuring high recall are critical to successful mainstream clinical genomic testing, in particular for whole genome sequencing where millions of variants must be considered for each patient. METHODS: We developed EyeG2P, a publicly available database and web application using the Ensembl Variant Effect Predictor. EyeG2P is tailored for efficient variant prioritisation for individuals with inherited ophthalmic conditions. We assessed the sensitivity of EyeG2P in 1234 individuals with a broad range of eye conditions who had previously received a confirmed molecular diagnosis through routine genomic diagnostic approaches. For a prospective cohort of 83 individuals, we assessed the precision of EyeG2P in comparison with routine diagnostic approaches. For 10 additional individuals, we assessed the utility of EyeG2P for whole genome analysis. RESULTS: EyeG2P had 99.5% sensitivity for genomic variants previously identified as clinically relevant through routine diagnostic analysis (n=1234 individuals). Prospectively, EyeG2P enabled a significant increase in precision (35% on average) in comparison with routine testing strategies (p<0.001). We demonstrate that incorporation of EyeG2P into whole genome sequencing analysis strategies can reduce the number of variants for analysis to six variants, on average, while maintaining high diagnostic yield. CONCLUSION: Automated filtering of genomic variants through EyeG2P can increase the efficiency of diagnostic testing for individuals with a broad range of inherited ophthalmic disorders.


Subject(s)
Databases, Genetic , Eye Diseases , Genetic Testing , Genome, Human , Genomics , Eye Diseases/genetics , Humans , Genetic Variation
18.
Ophthalmology ; 130(1): 68-76, 2023 01.
Article in English | MEDLINE | ID: mdl-35934205

ABSTRACT

PURPOSE: To characterize the phenotype observed in a case series with macular disease and determine the cause. DESIGN: Multicenter case series. PARTICIPANTS: Six families (7 patients) with sporadic or multiplex macular disease with onset at 20 to 78 years, and 1 patient with age-related macular degeneration. METHODS: Patients underwent ophthalmic examination; exome, genome, or targeted sequencing; and/or polymerase chain reaction (PCR) amplification of the breakpoint, followed by cloning and Sanger sequencing or direct Sanger sequencing. MAIN OUTCOME MEASURES: Clinical phenotypes, genomic findings, and a hypothesis explaining the mechanism underlying disease in these patients. RESULTS: All 8 cases carried the same deletion encompassing the genes TPRX1, CRX, and SULT2A1, which was absent from 382 control individuals screened by breakpoint PCR and 13 096 Clinical Genetics patients with a range of other inherited conditions screened by array comparative genomic hybridization. Microsatellite genotypes showed that these 7 families are not closely related, but genotypes immediately adjacent to the deletion breakpoints suggest they may share a distant common ancestor. CONCLUSIONS: Previous studies had found that carriers for a single defective CRX allele that was predicted to produce no functional CRX protein had a normal ocular phenotype. Here, we show that CRX whole-gene deletion in fact does cause a dominant late-onset macular disease.


Subject(s)
Macular Degeneration , Humans , Comparative Genomic Hybridization , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Pedigree , Phenotype , Trans-Activators/genetics , Homeodomain Proteins/genetics
19.
Hum Mol Genet ; 32(4): 595-607, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36084042

ABSTRACT

The purpose of this paper is to identify likely pathogenic non-coding variants in inherited retinal dystrophy (IRD) genes, using genome sequencing (GS). Patients with IRD were recruited to the study and underwent comprehensive ophthalmological evaluation and GS. The results of GS were investigated through virtual gene panel analysis, and plausible pathogenic variants and clinical phenotype evaluated by the multidisciplinary team (MDT) discussion. For unsolved patients in whom a specific gene was suspected to harbor a missed pathogenic variant, targeted re-analysis of non-coding regions was performed on GS data. Candidate variants were functionally tested by messenger RNA analysis, minigene or luciferase reporter assays. Previously unreported, likely pathogenic, non-coding variants in 7 genes (PRPF31, NDP, IFT140, CRB1, USH2A, BBS10 and GUCY2D), were identified in 11 patients. These were shown to lead to mis-splicing (PRPF31, IFT140, CRB1 and USH2A) or altered transcription levels (BBS10 and GUCY2D). MDT-led, phenotype-driven, non-coding variant re-analysis of GS is effective in identifying the missing causative alleles.


Subject(s)
Retinal Dystrophies , Humans , Mutation , Pedigree , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Whole Genome Sequencing , Patient Care Team , DNA Mutational Analysis/methods , Eye Proteins/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics
20.
Eye (Lond) ; 37(9): 1874-1877, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36163489

ABSTRACT

BACKGROUND: Voretigene neparvovec (VN) is a gene therapeutic agent for treatment of retinal dystrophies caused by bi-allelic RPE65 mutations. We illustrate, both the benefits and pitfalls associated with ocular gene therapy in the same patient. METHODS: Two eyes of one patient with bi-allelic RPE65 mutations have been treated with VN. The clinical examinations included visual acuity (VA, in normal and low luminance), colour vision, contrast sensitivity, International Society for Clinical Electrophysiology of Vision (ISCEV) standard retinal electrophysiology and dark-adapted full-field stimulus threshold (FST), Goldmann VF analysis and imaging studies, including optical coherence tomography (OCT) and autofluorescence. These were performed at baseline, 2-weeks, 3 and 6-months, 1 and 2-years follow-up. RESULTS: The first eye showed improvement in rod photoreceptor function with increased peripheral and low luminance vision (baseline VA: 0.9 logMAR and 2-years post-operative VA: 0.7 logMAR). The second eye, whilst showing increased light sensitivity, suffered a drop in central vision (at 2-weeks) with loss of foveal photoreceptors as shown by the loss of ellipsoid zone on OCT scan (baseline VA: 0.6, 2-year post-operative VA: 1.2). FST improvements were maintained in both eyes indicating a sustained efficacy of VN with little waning of its effect. CONCLUSIONS: We present a previously unreported adverse complication of subretinal VN therapy in bi-allelic RPE65, indicating a probable immune response in treatment of the second eye, resulting in loss of foveal photoreceptors. This case-series highlights the potential and pitfalls of retinal gene therapy in the same patient. The immune responses of the body to a 'foreign vector', remains a challenge.


Subject(s)
Retinal Dystrophies , Vision, Low , Humans , Retina , Retinal Dystrophies/genetics , Retinal Dystrophies/therapy , Vision, Ocular , Genetic Therapy/methods , Visual Acuity , Vision, Low/etiology , Tomography, Optical Coherence , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL