Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
DNA Repair (Amst) ; 126: 103491, 2023 06.
Article in English | MEDLINE | ID: mdl-37018982

ABSTRACT

Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.


Subject(s)
Lamin Type A , Progeria , Mice , Animals , Lamin Type A/genetics , Thymidine Kinase , Progeria/genetics , DNA , Chromosomes, Mammalian , Mammals/genetics
2.
Development ; 149(3)2022 02 01.
Article in English | MEDLINE | ID: mdl-35156682

ABSTRACT

The proper development and patterning of organs rely on concerted signaling events emanating from intracellular and extracellular molecular and biophysical cues. The ability to model and understand how these microenvironmental factors contribute to cell fate decisions and physiological processes is crucial for uncovering the biology and mechanisms of life. Recent advances in microfluidic systems have provided novel tools and strategies for studying aspects of human tissue and organ development in ways that have previously been challenging to explore ex vivo. Here, we discuss how microfluidic systems and organs-on-chips provide new ways to understand how extracellular signals affect cell differentiation, how cells interact with each other, and how different tissues and organs are formed for specialized functions. We also highlight key advancements in the field that are contributing to a broad understanding of human embryogenesis, organogenesis and physiology. We conclude by summarizing the key advantages of using dynamic microfluidic or microphysiological platforms to study intricate developmental processes that cannot be accurately modeled by using traditional tissue culture vessels. We also suggest some exciting prospects and potential future applications of these emerging technologies.


Subject(s)
Microfluidics/methods , Models, Biological , Heart/growth & development , Heart/physiology , Humans , Lab-On-A-Chip Devices , Microfluidics/instrumentation , Polyesters/chemistry , Printing, Three-Dimensional , Tissue Engineering
3.
Cell Stem Cell ; 28(4): 587-589, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33798416

ABSTRACT

Methods for deriving the ureteric epithelium (UE) in vitro could improve understanding of kidney development and patterning. In this issue of Cell Stem Cell, Howden et al. (2021) identified transcriptionally distinct cell populations in human induced pluripotent stem cell (iPSC)-derived distal nephron (DN) epithelia that were inducible to UE phenotype within kidney organoids.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Cell Differentiation , Epithelium , Humans , Kidney , Nephrons , Organoids
SELECTION OF CITATIONS
SEARCH DETAIL