Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters








Publication year range
1.
J Chem Phys ; 140(14): 144306, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24735298

ABSTRACT

A detailed experimental investigation of the (19)F nuclear magnetic resonance is made on single crystals of the homometallic Cr8 antiferromagnetic molecular ring and heterometallic Cr7Cd and Cr7Ni rings in the low temperature ground state. Since the F(-) ion is located midway between neighboring magnetic metal ions in the ring, the (19)F-NMR spectra yield information about the local electronic spin density and (19)F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S(T) = 0, the (19)F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the (19)F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S(T) = 1. In the heterometallic rings, Cr7Cd and Cr7Ni, whose ground state is magnetic with S(T) = 3/2 and S(T) = 1/2, respectively, the (19)F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the (19)F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F(-)-Ni(2+) and the F(-)-Cd(2+) bonds. The values of the hyperfine constants compare well to the ones known for F(-)-Ni(2+) in KNiF3 and NiF2 and for F(-)-Cr(3+) in K2NaCrF6. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F(-) ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

2.
J Phys Condens Matter ; 24(40): 406002, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22971620

ABSTRACT

We present (53)Cr-NMR spectra collected at low temperature in a single crystal of the heterometallic antiferromagnetic (AF) ring Cr(7)Ni in the S = 1/2 ground state with the aim of establishing the distribution of the local electronic moment in the ring. Due to the poor S/N we observed only one signal which is ascribed to three almost equivalent (53)Cr nuclei in the ring. The calculated spin density in Cr(7)Ni in the ground state, with the applied magnetic field both parallel and perpendicular to the plane of the ring, turns out to be AF staggered with the greatest component of the local spin for the Cr(3+) ions next to the Ni(2+) ion. The (53)Cr-NMR frequency was found to be in good agreement with the local spin density calculated theoretically by assuming a core polarization field of H(cp) = - 11 T/µ(B) for both orientations, close to the value found previously in Cr(7)Cd. The observed orientation dependence of the local spin moments is well reproduced by the theoretical calculation and evidences the importance of single-ion and dipolar anisotropies.


Subject(s)
Chromium Alloys/chemistry , Magnetic Resonance Spectroscopy/methods , Materials Testing , Spin Labels
3.
Appl Radiat Isot ; 69(12): 1702-5, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21371896

ABSTRACT

(10)B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include (1)H and (10)B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.


Subject(s)
Boron Neutron Capture Therapy , Boron , Gadolinium , Isotopes , Animals , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Neoplasms, Experimental/metabolism , Protons , Rats
4.
J Phys Condens Matter ; 22(21): 216007, 2010 Jun 02.
Article in English | MEDLINE | ID: mdl-21393733

ABSTRACT

We show that intramolecular exchange disorder recently found in the geometrically frustrated magnetic molecules {Mo(72)Fe(30)} and {Mo(72)Cr(30)} leads, in a classical Heisenberg model description, to spin freezing and slow magnetization dynamics reminiscent of spin glass behaviour. Also we suggest that our low temperature and low magnetic field nuclear magnetic resonance (NMR) measurements on {Mo(72)Fe(30)}, showing rapid and strong broadening of the proton line width on cooling below 600 mK, are evidence for a crossover from paramagnetic behaviour to a frozen spin configuration. Similar broadening is observed in {Mo(72)Cr(30)}. This observed effect is consistent with our theory of spin freezing and slow magnetization dynamics in these systems due to exchange disorder.

5.
Phys Rev Lett ; 102(17): 177201, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19518820

ABSTRACT

Crystals containing Ni10 magnetic molecules display an unprecedented form of out-of-equilibrium behavior of the bulk magnetization M at temperatures as high as 17 K. We have performed 1H NMR measurements to probe the local Ni magnetic moments and their dynamics. It is apparent that no freezing of the Ni moments occurs, in striking contrast to what is observed in blocked superparamagnetic systems. The average local moments display the same behavior as M, thus unambiguously demonstrating the intrinsic character of the phenomenon. This result supports the hypothesis that the slowing down of M is due to a resonant phonon trapping mechanism which prevents the thermalization of M but not the fast spin flippings of the individual molecular moments. Indeed, the measured nuclear spin-lattice relaxation rate points to fast single-molecule dynamics at low temperature.

6.
Rev Sci Instrum ; 79(4): 046101, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18447559

ABSTRACT

We have developed a nonconventional broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range from 0.5 to 9 GHz. Dual antenna structure and the microwave absorbing environment differentiate the setup from the conventional one and enable broadband operation with any combination of frequency or magnetic field modulation and frequency or magnetic field sweeping. Its performance has been tested with the measurements on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample and with the measurements on the single molecular magnet, V6, in solid state at low temperature.

7.
Phys Rev Lett ; 97(26): 267204, 2006 Dec 31.
Article in English | MEDLINE | ID: mdl-17280461

ABSTRACT

The NMR spectra of 19F and 53Cr have been obtained at low temperatures in a heterometallic substituted antiferromagnetic (AF) ring Cr7Cd with an S=3/2 ground state and compared with the spectra in a homometallic Cr8 AF ring with an S=0 ground state. From the analysis of the spectra one can derive directly model independent values of the staggered nonuniform distribution of the local moment in the heterometallic ring Cr7Cd. The experimental values are found to be in excellent agreement with the theoretical values calculated on the basis of an effective spin Hamiltonian which includes crystal field effects.

8.
Phys Rev Lett ; 95(17): 176408, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16383848

ABSTRACT

7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration of magnetic defects within the structure drastically changes the nuclear magnetization relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential, indicating glassy behavior of the magnetic defects. The stretched exponential function is described as arising from a distribution of 7Li nuclear spin-lattice relaxation rates and we present a model for the distribution in terms of the dynamics of the magnetic defects. Our results explain the origin of recent puzzling 7Li NMR literature data on LiV2O4 and our model is likely applicable to other glassy systems.

9.
Phys Rev Lett ; 88(16): 167201, 2002 Apr 22.
Article in English | MEDLINE | ID: mdl-11955256

ABSTRACT

Heat capacity (C), magnetic torque, and proton NMR relaxation rate (1/T(1)) measurements were performed on Fe6:Li single crystals in order to study the crossings between S = 0 and S = 1 and between S = 1 and S = 2 magnetic states of the molecular rings, at magnetic fields B(c1) = 11.7 T and B(c2) = 22.4 T, respectively. C vs B data at 0.78 K show that the energy gap between two states remains finite at B(c)'s (Delta(1)/k(B) = 0.86 K and Delta(2)/k(B) = 2.36 K) thus proving that levels repel each other. The large Delta(1) value may also explain the anomalously large width of the peak in 1/T(1) vs B, around B(c1). This anticrossing, unexpected in a centrosymmetric system, requires a revision of the Hamiltonian.

10.
Phys Rev Lett ; 84(13): 2977-80, 2000 Mar 27.
Article in English | MEDLINE | ID: mdl-11018990

ABSTRACT

We present a novel method to measure the relaxation rate W of the magnetization of Mn 12O (12)-acetate (Mn12) magnetic molecular cluster in its S = 10 ground state at low T. It is based on the observation of an exponential growth in time of the proton NMR signal during the thermal equilibration of the magnetization of the molecules. We can explain the novel effect with a simple model which relates the intensity of the proton echo signal to the microscopic reversal of the magnetization of each individual Mn12 molecule during the equilibration process. The method should find wide application in the study of magnetic molecular clusters in off-equilibrium conditions.

12.
Phys Rev B Condens Matter ; 54(13): 9469-9474, 1996 Oct 01.
Article in English | MEDLINE | ID: mdl-9984686
14.
16.
SELECTION OF CITATIONS
SEARCH DETAIL