Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
J Pharm Pharmacol ; 49(3): 282-7, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9231346

ABSTRACT

Methaemoglobin, the oxidized form of haemoglobin, can be formed by a variety of agents, most of which act to oxidize haemoglobin directly or indirectly. Cyanide has a higher affinity for methaemoglobin than for mitochondrial cytochromes, making methaemoglobin formation a basis for the treatment of cyanide poisoning. We used the beagle dog model to investigate the relationship between drug concentration and methaemoglobin levels for two candidate anti-cyanide compounds. The compounds studied were the aminophenones p-aminopropiophenone (PAPP) and p-aminoheptylphenone (PAHP). Both PAPP and PAHP were given as intravenous boluses and as two different oral formulations. The kinetics of both compounds appeared to follow a three-compartment open model for intravenous bolus administration and a two-compartment open model for oral administration. The first distribution phase seen with the intravenous administration was obscured by the absorption phase during oral administration. Bioavailability for all formulations varied between 20 and 47%. For both compounds there was a delay between the appearance of drug in the plasma and the appearance of methaemoglobin (counter-clockwise hysteresis) which is suggestive of an active metabolite causing methaemoglobin formation. The pharmacodynamics were fit with an effect-compartment kinetic-dynamic model linked to a sigmoid Emax pharmacodynamic model. Maximum amounts of methaemoglobin occurred between 2 and 4 h for PAHP and between 1 and 3 h for PAPP. When administered intravenously estimates of EC50 were lower than the estimates of EC50 from oral administration for both compounds. This might be because of oral first-pass inactivation or a 'first-pass' activation through the lungs contributing to the formation of an active metabolite. The phenones as a class appear to have the drug cleared and methaemoglobin return to near baseline within 12 h. Both compounds seem to produce sufficient methaemoglobin to treat acute cyanide poisoning and to serve as prophylactic agents against acute cyanide poisoning in a military setting.


Subject(s)
Antidotes/pharmacology , Antidotes/pharmacokinetics , Ketones/pharmacology , Ketones/pharmacokinetics , Methemoglobin/metabolism , Propiophenones/pharmacology , Propiophenones/pharmacokinetics , Administration, Oral , Animals , Antidotes/administration & dosage , Dogs , Injections, Intravenous , Male , Propiophenones/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL