Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Organometallics ; 40(15): 2467-2477, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-36210909

ABSTRACT

Iron-catalyzed C-C coupling reactions of pyrrole provide a unique alternative to the traditional Pd-catalyzed counterpart. However, many details regarding the actual mechanism remain unknown. A series of macrocyclic iron(III) complexes were used to evaluate specifics related to the role of O2, radicals, and µ-oxodiiron-complex participation in the catalytic cycle. It was determined that the mononuclear tetra-azamacrocyclic complex is a true catalyst and not a stoichiometric reagent, while more than one equivalent of a sacrificial oxidant is needed. Furthermore, the reaction does not proceed through an organic radical pathway. µ-Oxodiiron complexes are not involved in the main catalytic pathway, and the dimers are, in fact, off-cycle species that decrease catalytic efficiency.

2.
Dalton Trans ; 48(33): 12430-12439, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31342985

ABSTRACT

The pyridinophane molecule L2 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-trien-13-ol) has shown promise as a therapuetic for neurodegenerative diseases involving oxidative stress and metal ion misregulation. Protonation and metal binding stability constants with Mg2+, Ca2+, Cu2+, and Zn2+ ions were determined to further explore the therapeutic and pharmacological potential of this water soluble small molecule. These studies show that incorporation of an -OH group in position 4 of the pyridine ring decreases the pI values compared to cyclen and L1 (3,6,9,15-tetraazabicyclo[9.3.1]penta-deca-1(15),11,13-triene). Furthermore, this approach tunes the basicity of the tetra-aza macrocyclic ligand through the enhanced resonance stabilization of the -OH in position 4 and rigidity of the pyridine ring such that L2 has increased basicity compared to previously reported tetra-aza macrocycles. A metal binding preference for Cu2+, a redox cycling agent known to produce oxidative stress, indicates that this would be the in vivo metal target of L2. However, the binding constant of L2 with Cu2+ is moderated compared to cyclen due to the rigidity of the ligand and shows how ligand design can be used to tune metal selectivity. An IC50 = 298.0 µM in HT-22 neuronal cells was observed. Low metabolic liability was determined in both Phase I and II in vitro models. Throughout these studies other metal binding systems were used for comparison and as appropriate controls. The reactivity reported to date and pharmacological features described herein warrant further studies in vivo and the pursuit of L2 congeners using the knowledge that pyridine substitution in a pyridinophane can be used to tune the structure of the ligand and retain the positive therapeutic outcomes.


Subject(s)
Antioxidants/pharmacology , Organoplatinum Compounds/pharmacology , Small Molecule Libraries/pharmacology , Animals , Antioxidants/chemistry , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Ligands , Male , Mice , Mice, Inbred ICR , Molecular Structure , Organoplatinum Compounds/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship
3.
Inorg Chem ; 57(15): 8890-8902, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30024738

ABSTRACT

Macrocyclic ligands have been explored extensively as scaffolds for transition metal catalysts for oxygen and hydrogen atom transfer reactions. C-C reactions facilitated using earth abundant metals bound to macrocyclic ligands have not been well-understood but could be a green alternative to replacing the current expensive and toxic precious metal systems most commonly used for these processes. Therefore, the yields from direct Suzuki-Miyaura C-C coupling of phenylboronic acid and pyrrole to produce 2-phenylpyrrole facilitated by eight high-spin iron complexes ([Fe3+L1(Cl)2]+, [Fe3+L4(Cl)2]+, [Fe2+L5(Cl)]+, [Fe2+L6(Cl)2], [Fe3+L7(Cl)2]+, [Fe3+L8(Cl)2]+, [Fe2+L9(Cl)]+, and [Fe2+L10(Cl)]+) were compared to identify the effect of structural and electronic properties on catalytic efficiency. Specifically, catalyst complexes were compared to evaluate the effect of five properties on catalyst reaction yields: (1) the coordination requirements of the catalyst, (2) redox half-potential of each complex, (3) topological constraint/rigidity, (4) N atom modification(s) increasing oxidative stability of the complex, and (5) geometric parameters. The need for two labile cis-coordination sites was confirmed based on a 42% decrease in catalytic reaction yield observed when complexes containing pentadentate ligands were used in place of complexes with tetradentate ligands. A strong correlation between iron(III/II) redox potential and catalytic reaction yields was also observed, with [Fe2+L6(Cl)2] providing the highest yield (81%, -405 mV). A Lorentzian fitting of redox potential versus yields predicts that these catalysts can undergo more fine-tuning to further increase yields. Interestingly, the remaining properties explored did not show a direct, strong relationship to catalytic reaction yields. Altogether, these results show that modifications to the ligand scaffold using fundamental concepts of inorganic coordination chemistry can be used to control the catalytic activity of macrocyclic iron complexes by controlling redox chemistry of the iron center. Furthermore, the data provide direction for the design of improved catalysts for this reaction and strategies to understand the impact of a ligand scaffold on catalytic activity of other reactions.

4.
RSC Adv ; 8(6): 3024-3035, 2018.
Article in English | MEDLINE | ID: mdl-29503730

ABSTRACT

Interests in inorganic applications of triazines is growing. In this report, metal complexes of copper(II), nickel(II), and zinc(II) and a novel class of chelates comprising a triazine ring substituted with a hydrazine group and pyralozone are evaluated using spectrophotometric methods, single crystal X-ray diffractometry, and electrochemistry. Complexes with copper(II) include a single chelate and two chloride atoms to satisfy a trigonal bipryamidal coordination sphere. The nickel(II) and zinc(II) complexes are comprised of two chelating groups that adopt an octahedral geometry around the metal ion. Irreversible redox activity was observed with the copper(II) complex but no redox activity was observed with the ligand alone or zinc(II) and nickel(II) complexes. Use of the coumarin carboxylic acid assay shows that the ligand motif is capable of preventing redox cycling of copper in biological conditions and could thus serve as an antioxidant preventative agent. Cellular toxicity studies show that the new triazine molecule could have therapeutic applications in the µM concentration range based on the measured EC50=1.183±2 mM. Altogether this work shows that by merging triazine chemistry into inorganic compounds, there is potential to explore a range applications thanks to the new architecture.

5.
Front Behav Neurosci ; 11: 106, 2017.
Article in English | MEDLINE | ID: mdl-28634445

ABSTRACT

Alterations of the normal redox state can be found in all stages of schizophrenia, suggesting a key role for oxidative stress in the etiology and maintenance of the disease. Pharmacological blockade of N-methyl-D-aspartic acid (NMDA) receptors can disrupt natural antioxidant defense systems and induce schizophrenia-like behaviors in animals and healthy human subjects. Perinatal administration of the NMDA receptor (NMDAR) antagonist ketamine produces persistent behavioral deficits in adult mice which mimic a range of positive, negative, and cognitive symptoms that characterize schizophrenia. Here we tested whether antioxidant treatment with the glutathione (GSH) precursor N-acetyl-cysteine (NAC) can prevent the development of these behavioral deficits. On postnatal days (PND) 7, 9 and 11, we treated mice with subanesthetic doses (30 mg/kg) of ketamine or saline. Two groups (either ketamine or saline treated) also received NAC throughout development. In adult animals (PND 70-120) we then assessed behavioral alterations in a battery of cognitive and psychomotor tasks. Ketamine-treated animals showed deficits in a task of cognitive flexibility, abnormal patterns of spontaneous alternation, deficits in novel-object recognition, as well as social interaction. Developmental ketamine treatment also induced behavioral stereotypy in response to an acute amphetamine challenge, and it impaired sensorimotor gating, measured as reduced prepulse inhibition (PPI) of the startle response. All of these behavioral abnormalities were either prevented or strongly ameliorated by NAC co-treatment. These results suggest that oxidative stress is a major factor for the development of the ketamine-induced behavioral dysfunctions, and that restoring oxidative balance during the prodromal stage of schizophrenia might be able to ameliorate the development of several major symptoms of the disease.

SELECTION OF CITATIONS
SEARCH DETAIL