Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Phys Rev Lett ; 123(21): 210401, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809126

ABSTRACT

Dynamical decoupling (DD) is a powerful method for controlling arbitrary open quantum systems. In quantum spin control, DD generally involves a sequence of timed spin flips (π rotations) arranged to either average out or selectively enhance coupling to the environment. Experimentally, errors in the spin flips are inevitably introduced, motivating efforts to optimize error-robust DD. Here we invert this paradigm: by introducing particular control "errors" in standard DD, namely, a small constant deviation from perfect π rotations (pulse adjustments), we show we obtain protocols that retain the advantages of DD while introducing the capabilities of quantum state readout and polarization transfer. We exploit this nuclear quantum state selectivity on an ensemble of nitrogen-vacancy centers in diamond to efficiently polarize the ^{13}C quantum bath. The underlying physical mechanism is generic and paves the way to systematic engineering of pulse-adjusted protocols with nuclear state selectivity for quantum control applications.

2.
Nano Lett ; 19(7): 4543-4550, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31150580

ABSTRACT

The precise measurement of mechanical stress at the nanoscale is of fundamental and technological importance. In principle, all six independent variables of the stress tensor, which describe the direction and magnitude of compression/tension and shear stress in a solid, can be exploited to tune or enhance the properties of materials and devices. However, existing techniques to probe the local stress are generally incapable of measuring the entire stress tensor. Here, we make use of an ensemble of atomic-sized in situ strain sensors in diamond (nitrogen-vacancy defects) to achieve spatial mapping of the full stress tensor, with a submicrometer spatial resolution and a sensitivity of the order of 1 MPa (10 MPa) for the shear (axial) stress components. To illustrate the effectiveness and versatility of the technique, we apply it to a broad range of experimental situations, including mapping the stress induced by localized implantation damage, nanoindents, and scratches. In addition, we observe surprisingly large stress contributions from functional electronic devices fabricated on the diamond and also demonstrate sensitivity to deformations of materials in contact with the diamond. Our technique could enable in situ measurements of the mechanical response of diamond nanostructures under various stimuli, with potential applications in strain engineering for diamond-based quantum technologies and in nanomechanical sensing for on-chip mass spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL