Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Article in English | MEDLINE | ID: mdl-38845124

ABSTRACT

A new automated radiosynthesis of [11C]2-(2,6-difluoro-4-((2-(N-methylphenylsulfonamido)ethyl)thio)phenoxy)acetamide ([11C]K2), a radiopharmaceutical for the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, is reported. Although manual syntheses have been described, these are unsuitable for routine production of larger batches of [11C]K2 for (pre)clinical PET imaging applications. To meet demands for the imaging agent from our functional neuroimaging collaborators, herein, we report a current good manufacturing practice (cGMP)-compliant synthesis of [11C]K2 using a commercial synthesis module. The new synthesis is fully automated and has been validated for clinical use. The total synthesis time is 33 min from end of bombardment, and the production method provides 2.66 ± 0.3 GBq (71.9 ± 8.6 mCi) of [11C]K2 in 97.7 ± 0.5% radiochemical purity and 754.1 ± 231.5 TBq/mmol (20,382.7 ± 6256.1 Ci/mmol) molar activity (n = 3). Batches passed all requisite quality control testing confirming suitability for clinical use.

2.
J Endocr Soc ; 8(6): bvae049, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38617812

ABSTRACT

Context: Functional positron emission tomography (PET) imaging for the characterization of pheochromocytoma and paraganglioma (PCC/PGL) and for detection of metastases in malignant disease, offers valuable clinical insights that can significantly guide patient treatment. Objective: This work aimed to evaluate a novel PET radiotracer, 3-[18F]fluoro-para-hydroxyphenethylguanidine (3-[18F]pHPG), a norepinephrine analogue, for its ability to localize PCC/PGL. Methods: 3-[18F]pHPG PET/CT whole-body scans were performed on 16 patients (8 male:8 female; mean age 47.6 ± 17.6 years; range, 19-74 years) with pathologically confirmed or clinically diagnosed PCC/PGL. After intravenous administration of 304 to 475 MBq (8.2-12.8 mCi) of 3-[18F]pHPG, whole-body PET scans were performed at 90 minutes in all patients. 3-[18F]pHPG PET was interpreted for abnormal findings consistent with primary tumor or metastasis, and biodistribution in normal organs recorded. Standardized uptake value (SUV) measurements were obtained for target lesions and physiological organ distributions. Results: 3-[18F]pHPG PET showed high radiotracer uptake and trapping in primary tumors, and metastatic tumor lesions that included bone, lymph nodes, and other solid organ sites. Physiological biodistribution was universally present in salivary glands (parotid, submandibular, sublingual), thyroid, heart, liver, adrenals, kidneys, and bladder. Comparison [68Ga]DOTATATE PET/CT was available in 10 patients and in all cases showed concordant distribution. Comparison [123I]meta-iodobenzylguanidine [123I]mIBG planar scintigraphy and SPECT/CT scans were available for 4 patients, with 3-[18F]pHPG showing a greater number of metastatic lesions. Conclusion: We found the kinetic profile of 3-[18F]pHPG PET affords high activity retention within benign and metastatic PCC/PGL. Therefore, 3-[18F]pHPG PET imaging provides a novel modality for functional imaging and staging of malignant paraganglioma with advantages of high lesion affinity, whole-body coregistered computed tomography, and rapid same-day imaging.

3.
JCI Insight ; 9(8)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502228

ABSTRACT

Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.


Subject(s)
Cholesterol , Immune Checkpoint Inhibitors , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Animals , Mice , Female , Cholesterol/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Positron-Emission Tomography/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Lymphocyte Activation
4.
Nucl Med Biol ; 130-131: 108892, 2024.
Article in English | MEDLINE | ID: mdl-38447298

ABSTRACT

INTRODUCTION: Increased demand for NetSpot and Illuccix as requirement to receive the respective Lutathera and Pluvicto radiotherapies, and monitor subsequent response to treatment, have reinforced the need to develop alternative ways of producing gallium-68 (68Ga). Building on our efforts to produce 68Ga in a liquid target on a GE PETtrace, the goal of this work is to modify the current GE Gallium Chloride cassette using the FASTLab 2 synthesis module to produce [68Ga]GaCl3 equivalent to a 1.85 GBq generator and demonstrate compatibility with FDA-approved kits for production of 68Ga-labeled radiopharmaceuticals. METHODS: 68Ga was produced in a liquid target via the 68Zn(p,n)68Ga reaction. 68Ga was loaded onto various sizes of ZR resins (ZR Load, 0.3 mL, 1 mL, or 2 mL). The loading efficiency was determined using a dose calibrator. After washing with HNO3, 1.75 M HCl was used to elute the ZR Load resin through various sizes of a second ZR resin (ZR CG, 0 mL, 2 mL, 4 mL). Using 0.5 mL fractions, the elution profile was determined. Compatibility of the [68Ga]GaCl3 with NetSpot and Illuccix kits was investigated. Radiochemical purity (RCP) and 4 h stability were determined using radioTLC and radioHPLC. Using a modified [68Ga]GaCl3 cassette and new FASTLab program, 6 validation preparations were conducted using NetSpot and Illuccix kits for which RCP, stability, sterility and suitability were determined. Dual irradiation of 2 liquid targets was also performed, which was used to simultaneously prepare 1 NetSpot and 2 Illuccix kits by diluting the required activity with 0.1 M HCl. RESULTS: The commercially available GE Cassette gave low RCP using commercial FDA kits. To optimize this, the loading efficiency onto ZR Load and the ratio of ZR resin used to load the initial activity and subsequent elution were explored. When using a 2:4 ratio of ZR Load to ZR CG, 97.89 % RCP was observed when a 3.8 mL [68Ga]GaCl3 solution was used. For Dotatate validation, 0.55 mL of buffer was added to 4.2 mL of [68Ga]GaCl3 which gave 1.35 GBq of formulated product. For Illuccix validation, [68Ga]GaCl3 was added to 2.5 mL of buffer which gave 1.52 GBq of [68Ga]Ga-PSMA-11. Formulated products passed package insert quality control (QC) requirements. When dual target irradiations were performed, 2.84 GBq was delivered to an external vial and used to label 1 NetSpot and 2 Illuccix kits simultaneously, and each kit also met or exceeded established QC criteria. CONCLUSION: Methods are reported for using cyclotron-produced 68Ga from a liquid target in conjunction with FDA-approved NetSpot and Illucix kits. By employing a 2 mL ZR Load resin with a 4 mL ZR CG resin, adequate resolution between residual 68Zn and desired 68Ga was achieved. By modifying the FASTLab procedure to retain the final 2.5 mL of eluate from the ZR CG resin, [68Ga]GaCl3 equivalent to a new 1.85 GBq generator was obtained. This was suitable for labeling NetSpot and Illucix kits, resulting in high incorporation of 68Ga (RCP >95 %), which has not previously been demonstrated. Delivering [68Ga]GaCl3 into an external vial and diluting with 0.1 M HCl makes it possible to prepare multiple kits simultaneously. These new procedures should facilitate use of cyclotron-produced [68Ga]GaCl3 for clinical production going.


Subject(s)
Gallium Radioisotopes , Organometallic Compounds , Radiopharmaceuticals , Radiopharmaceuticals/metabolism , Gallium Radioisotopes/metabolism , Cyclotrons
5.
Angew Chem Int Ed Engl ; 63(2): e202316365, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38010255

ABSTRACT

This report describes the development of a Zn(OTf)2 -mediated method for converting α-tertiary haloamides to the corresponding fluorine-18 labelled α-tertiary fluoroamides with no-carrier-added [18 F]tetramethylammonium fluoride. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene is an essential additive for achieving high radiochemical conversion. Under the optimised conditions, radiofluorination proceeds at sterically hindered tertiary sites in high radiochemical conversions, yields, and purities. This method has been successfully automated and applied to access >200 mCi (>7.4 GBq) of several model radiofluorides. Mechanistic studies led to the development of a new, nucleophilic C-H radiofluorination process using N-sulphonyloxyamide substrates.

6.
Methods Mol Biol ; 2729: 45-53, 2024.
Article in English | MEDLINE | ID: mdl-38006490

ABSTRACT

Direct C-H functionalization of (hetero)aromatic C-H bonds with iridium-catalyzed borylation followed by copper-mediated radiofluorination of the in situ generated organoboronates affords fluorine-18 labeled aromatics in high radiochemical conversions and meta-selectivities. This protocol describes the benchtop reaction assembly of the C-H borylation and radiofluorination steps, which can be utilized for the fluorine-18 labeling of densely functionalized bioactive scaffolds.


Subject(s)
Copper , Iridium , Copper/chemistry , Iridium/chemistry , Fluorine Radioisotopes/chemistry , Catalysis
7.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873149

ABSTRACT

Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.

8.
Org Process Res Dev ; 27(2): 373-381, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36874204

ABSTRACT

This report describes a comparison of four different routes for the clinical-scale radiosynthesis of the κ-opioid receptor antagonist [11C]LY2795050. Palladium-mediated radiocyanation and radiocarbonylation of an aryl iodide precursor as well as copper-mediated radiocyanation of an aryl iodide and an aryl boronate ester have been investigated. Full automation of all four methods is reported, each of which provides [11C]LY2795050 in sufficient radiochemical yield, molar activity, and radiochemical purity for clinical use. The advantages and disadvantages of each radiosynthesis method are compared and contrasted.

9.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36678568

ABSTRACT

Gold nanoparticles (AuNPs) are cutting-edge platforms for combined diagnostic and therapeutic approaches due to their exquisite physicochemical and optical properties. Using the AuNPs physically produced by femtosecond pulsed laser ablation of bulk Au in deionized water, with a capping agent-free surface, the conjugation of functional ligands onto the AuNPs can be tunable between 0% and 100% coverage. By taking advantage of this property, AuNPs functionalized by two different types of active targeting ligands with predetermined ratios were fabricated. The quantitatively controllable conjugation to construct a mixed monolayer of multiple biological molecules at a certain ratio onto the surface of AuNPs was achieved and a chelator-free 64Cu-labeling method was developed. We report here the manufacture, radiosynthesis and bioevaluation of three different types of dual-ligand AuNPs functionalized with two distinct ligands selected from glucose, arginine-glycine-aspartate (RGD) peptide, and methotrexate (MTX) for tumor theragnosis. The preclinical evaluation demonstrated that tumor uptakes and retention of two components AuNP conjugates were higher than that of single-component AuNP conjugates. Notably, the glucose/MT- modified dual-ligand AuNP conjugates showed significant improvement in tumor uptake and retention. The novel nanoconjugates prepared in this study make it possible to integrate several modalities with a single AuNP for multimodality imaging and therapy, combining the power of chemo-, thermal- and radiation therapies together.

10.
ACS Chem Neurosci ; 13(19): 2778-2783, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36112411

ABSTRACT

Imaging of misfolded proteins implicated in neurodegenerative disorders using positron emission tomography (PET) imaging has revolutionized dementia research. In this viewpoint, the development of radiotracers for tau PET is highlighted. We draw attention to key innovations that were essential to development of radiotracers for imaging tau, from early imaging agents, through the structure-activity relationship (SAR) studies required to minimize off-target binding of the newer probes in use today. We also highlight development of Tauvid, the first tau PET radiotracer approved by the US FDA for tau imaging in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/metabolism , Humans , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/metabolism , Neuroimaging , Positron-Emission Tomography/methods , tau Proteins/metabolism
11.
Front Chem ; 10: 878835, 2022.
Article in English | MEDLINE | ID: mdl-35433631

ABSTRACT

Mitochondrial complex I (MC-I) is an essential component of brain bioenergetics and can be quantified and studied using positron emission tomography (PET). A specific high affinity 18F radiotracer for MC-I enables monitoring of neurodegenerative disease progression and pathology via PET imaging. To facilitate clinical research studies tracking MC-I activity in Parkinson's disease and other neurodegenerative diseases, a fully automated synthesis of the recently described 2-tert-butyl-4-chloro-5-{6-[2-(2[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F] BCPP-EF, [ 18 F]1) was developed. We report the first automated synthesis [18F]BCPP-EF using a green radiochemistry approach. The radiotracer was synthesized with good radiochemical yield, excellent radiochemical purity, and high molar activity.

12.
J Nucl Med ; 63(12): 1949-1955, 2022 12.
Article in English | MEDLINE | ID: mdl-35483964

ABSTRACT

Imaging of cholesterol use is possible with the 131I scintiscanning/SPECT agent NP-59. This agent provided a noninvasive measure of adrenal function and steroid synthesis. However, iodine isotopes resulted in poor resolution, manufacturing challenges, and high radiation dosimetry to patients that have limited their use and clinical impact. A 18F analog would address these shortcomings while retaining the ability to image cholesterol use. The goal of this study was to prepare and evaluate a 18F analog of NP-59 to serve as a PET imaging agent for functional imaging of the adrenal glands based on cholesterol use. Previous attempts to prepare such an analog of NP-59 have proven elusive. Preclinical and clinical evaluation could be performed once the new fluorine analog of NP-59 production was established. Methods: The recent development of a new reagent for fluorination along with an improved route to the NP-59 precursor allowed for the preparation of a fluorine analog of NP-59, FNP-59. The radiochemistry for the 18F-radiolabeled 18F-FNP-59 is described, and rodent radiation dosimetry studies and in vivo imaging in New Zealand rabbits was performed. After in vivo toxicity studies, an investigational new drug approval was obtained, and the first-in-humans images with dosimetry using the agent were acquired. Results: In vivo toxicity studies demonstrated that FNP-59 is safe for use at the intended dose. Biodistribution studies with 18F-FNP-59 demonstrated a pharmacokinetic profile similar to that of NP-59 but with decreased radiation exposure. In vivo animal images demonstrated expected uptake in tissues that use cholesterol: gallbladder, liver, and adrenal glands. In this first-in-humans study, subjects had no adverse events and images demonstrated accumulation in target tissues (liver and adrenal glands). Manipulation of uptake was also demonstrated with patients who received cosyntropin, resulting in improved uptake. Conclusion: 18F-FNP-59 provided higher resolution images, with lower radiation dose to the subjects. It has the potential to provide a noninvasive test for patients with adrenocortical diseases.


Subject(s)
Adosterol , Fluorine , Animals , Humans , Rabbits , Tissue Distribution , Fluorine Radioisotopes , Positron-Emission Tomography/methods , Cholesterol
13.
ACS Chem Neurosci ; 13(9): 1382-1394, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35420022

ABSTRACT

Melatonin is a neurohormone that modulates several physiological functions in mammals through the activation of melatonin receptor type 1 and 2 (MT1 and MT2). The melatonergic system is an emerging therapeutic target for new pharmacological interventions in the treatment of sleep and mood disorders; thus, imaging tools to further investigate its role in the brain are highly sought-after. We aimed to develop selective radiotracers for in vivo imaging of both MT1 and MT2 by positron emission tomography (PET). We identified four previously reported MT ligands with picomolar affinities to the target based on different scaffolds which were also amenable for radiolabeling with either carbon-11 or fluorine-18. [11C]UCM765, [11C]UCM1014, [18F]3-fluoroagomelatine ([18F]3FAGM), and [18F]fluoroacetamidoagomelatine ([18F]FAAGM) have been synthesized in high radiochemical purity and evaluated in wild-type rats. All four tracers showed moderate to high brain permeability in rats with maximum standardized uptake values (SUVmax of 2.53, 1.75, 3.25, and 4.47, respectively) achieved 1-2 min after tracer administration, followed by a rapid washout from the brain. Several melatonin ligands failed to block the binding of any of the PET tracer candidates, while in some cases, homologous blocking surprisingly resulted in increased brain retention. Two 18F-labeled agomelatine derivatives were brought forward to PET scans in non-human primates and autoradiography on human brain tissues. No specific binding has been detected in blocking studies. To further investigate pharmacokinetic properties of the putative tracers, microsomal stability, plasma protein binding, log D, and membrane bidirectional permeability assays have been conducted. Based on the results, we conclude that the fast first pass metabolism by the enzymes in liver microsomes is the likely reason of the failure of our PET tracer candidates. Nevertheless, we showed that PET imaging can serve as a valuable tool to investigate the brain permeability of new therapeutic compounds targeting the melatonergic system.


Subject(s)
Melatonin , Animals , Brain/diagnostic imaging , Brain/metabolism , Fluorine Radioisotopes/metabolism , Ligands , Mammals/metabolism , Melatonin/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals , Rats , Receptors, Melatonin/metabolism
15.
Front Neurosci ; 15: 766176, 2021.
Article in English | MEDLINE | ID: mdl-34924935

ABSTRACT

Mutations in the huntingtin gene (HTT) triggers aggregation of huntingtin protein (mHTT), which is the hallmark pathology of neurodegenerative Huntington's disease (HD). Development of a high affinity 18F radiotracer would enable the study of Huntington's disease pathology using a non-invasive imaging modality, positron emission tomography (PET) imaging. Herein, we report the first synthesis of fluorine-18 imaging agent, 6-(5-((5-(2,2-difluoro-2-(fluoro-18F)ethoxy)pyridin-2-yl)methoxy)benzo[d]oxazol-2-yl)-2-methylpyridazin-3(2H)-one ([18F]1), a radioligand for HD and its preclinical evaluation in vitro (autoradiography of post-mortem HD brains) and in vivo (rodent and non-human primate brain PET). [18F]1 was synthesized in a 4.1% RCY (decay corrected) and in an average molar activity of 16.5 ± 12.5 GBq/µmol (445 ± 339 Ci/mmol). [18F]1 penetrated the blood-brain barrier of both rodents and primates, and specific saturable binding in post-mortem brain slices was observed that correlated to mHTT aggregates identified by immunohistochemistry.

16.
J Org Chem ; 86(20): 14121-14130, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34505779

ABSTRACT

This report describes a method for the nucleophilic radiofluorination of (hetero)aryl chlorides, (hetero)aryl triflates, and nitroarenes using a combination of [18F]KF·K2.2.2 and Me4NHCO3 for the in situ formation of a strongly nucleophilic fluorinating reagent (proposed to be [18F]Me4NF). This method is applied to 24 substrates bearing diverse functional groups, and it generates [18F](hetero)aryl fluoride products in good to excellent radiochemical yields in the presence of ambient air/moisture. The reaction is applied to the preparation of 18F-labeled HQ-415 for potential (pre)clinical use.


Subject(s)
Fluorides , Fluorine Radioisotopes , Quaternary Ammonium Compounds , Radiopharmaceuticals
17.
Eur J Nucl Med Mol Imaging ; 49(1): 125-136, 2021 12.
Article in English | MEDLINE | ID: mdl-34405276

ABSTRACT

PURPOSE: Positron emission tomography (PET) studies with radioligands for 18-kDa translocator protein (TSPO) have been instrumental in increasing our understanding of the complex role neuroinflammation plays in disorders affecting the brain. However, (R)-[11C]PK11195, the first and most widely used TSPO radioligand has limitations, while the next-generation TSPO radioligands have suffered from high interindividual variability in binding due to a genetic polymorphism in the TSPO gene (rs6971). Herein, we present the biological evaluation of the two enantiomers of [18F]GE387, which we have previously shown to have low sensitivity to this polymorphism. METHODS: Dynamic PET scans were conducted in male Wistar rats and female rhesus macaques to investigate the in vivo behaviour of (S)-[18F]GE387 and (R)-[18F]GE387. The specific binding of (S)-[18F]GE387 to TSPO was investigated by pre-treatment with (R)-PK11195. (S)-[18F]GE387 was further evaluated in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Sensitivity to polymorphism of (S)-GE387 was evaluated in genotyped human brain tissue. RESULTS: (S)-[18F]GE387 and (R)-[18F]GE387 entered the brain in both rats and rhesus macaques. (R)-PK11195 blocked the uptake of (S)-[18F]GE387 in healthy olfactory bulb and peripheral tissues constitutively expressing TSPO. A 2.7-fold higher uptake of (S)-[18F]GE387 was found in the inflamed striatum of LPS-treated rodents. In genotyped human brain tissue, (S)-GE387 was shown to bind similarly in low affinity binders (LABs) and high affinity binders (HABs) with a LAB to HAB ratio of 1.8. CONCLUSION: We established that (S)-[18F]GE387 has favourable kinetics in healthy rats and non-human primates and that it can distinguish inflamed from normal brain regions in the LPS model of neuroinflammation. Crucially, we have reconfirmed its low sensitivity to the TSPO polymorphism on genotyped human brain tissue. Based on these factors, we conclude that (S)-[18F]GE387 warrants further evaluation with studies on human subjects to assess its suitability as a TSPO PET radioligand for assessing neuroinflammation.


Subject(s)
Radiopharmaceuticals , Receptors, GABA , Animals , Brain/diagnostic imaging , Brain/metabolism , Carrier Proteins , Female , Humans , Macaca mulatta/genetics , Male , Polymorphism, Genetic , Positron-Emission Tomography , Rats , Rats, Wistar , Receptors, GABA/genetics , Receptors, GABA/metabolism , Receptors, GABA-A
18.
J Am Chem Soc ; 143(18): 6915-6921, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33914521

ABSTRACT

This article describes a sequential Ir/Cu-mediated process for the meta-selective C-H radiofluorination of (hetero)arene substrates. In the first step, Ir-catalyzed C(sp2)-H borylation affords (hetero)aryl pinacolboronate (BPin) esters. The intermediate organoboronates are then directly subjected to copper-mediated radiofluorination with [18F]tetrabutylammonium fluoride to afford fluorine-18 labeled (hetero)arenes in high radiochemical yield and radiochemical purity. This entire process is performed on a benchtop without Schlenk or glovebox techniques and circumvents the need to isolate (hetero)aryl boronate esters. The reaction was automated on a TracerLab FXFN module with 1,3-dimethoxybenzene and a meta-tyrosine derivative. The products, [18F]1-fluoro-3,5-dimethoxybenzene and an 18F-labeled meta-tyrosine derivative, were obtained in 37 ± 5% isolated radiochemical yield and >99% radiochemical purity and 25% isolated radiochemical yield and 99% radiochemical purity, and 0.52 Ci/µmol (19.24 GBq/µmol) molar activity (Am), respectively.


Subject(s)
Boronic Acids/chemistry , Copper/chemistry , Esters/chemistry , Fluorides/chemistry , Iridium/chemistry , Quaternary Ammonium Compounds/chemistry , Fluorine Radioisotopes , Halogenation , Molecular Structure
19.
J Labelled Comp Radiopharm ; 64(4): 187-193, 2021 04.
Article in English | MEDLINE | ID: mdl-33274468

ABSTRACT

A new method for the synthesis of the highly selective delta opioid receptor (DOR) antagonist radiotracer N1 '-([11 C]methyl)naltrindole ([11 C]MeNTI) is described. The original synthesis required hydrogenation of a benzyl protecting group after 11 C-labeling, which is challenging in modern radiochemistry laboratories that tend to be heavily automated and operate according to current good manufacturing practice. To address this challenge, we describe development of a novel MeNTI precursor bearing a methoxymethyl acetal (MOM) protecting group, which is easily removed with HCl, and employ it in an updated synthesis of [11 C]MeNTI. The new synthesis is fully automated and validated for clinical use. The total synthesis time is 45 min and provides [11 C]MeNTI in good activity yield (49 ± 8 mCi), molar activity (3,926 ± 326 Ci/mmol) and radiochemical purity (97% ± 2%).


Subject(s)
Indoles/chemistry , Morphinans/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Receptors, Opioid, delta/metabolism , Carbon Radioisotopes/chemistry
20.
Nucl Med Biol ; 93: 19-21, 2021 02.
Article in English | MEDLINE | ID: mdl-33232876

ABSTRACT

Radiochemical conversion is an important term to be included in the "Consensus nomenclature rules for radiopharmaceutical chemistry". Radiochemical conversion should be used to define reaction efficiency by measuring the transformation of components in a crude reaction mixture at a given time, whereas radiochemical yield is better suited to define the efficiency of an entire reaction process including, for example, separation, isolation, filtration, and formulation.


Subject(s)
Radiopharmaceuticals , Consensus , Radiochemistry
SELECTION OF CITATIONS
SEARCH DETAIL