Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10620, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391536

ABSTRACT

Artificial light at night (ALAN) is a globally spreading anthropogenic stressor, affecting more than 20% of coastal habitats. The alteration of the natural light/darkness cycle is expected to impact the physiology of organisms by acting on the complex circuits termed as circadian rhythms. Our understanding of the impact of ALAN on marine organisms is lagging behind that of terrestrial ones, and effects on marine primary producers are almost unexplored. Here, we investigated the molecular and physiological response of the Mediterranean seagrass, Posidonia oceanica (L.) Delile, as model to evaluate the effect of ALAN on seagrass populations established in shallow waters, by taking advantage of a decreasing gradient of dim nocturnal light intensity (from < 0.01 to 4 lx) along the NW Mediterranean coastline. We first monitored the fluctuations of putative circadian-clock genes over a period of 24 h along the ALAN gradient. We then investigated whether key physiological processes, known to be synchronized with day length by the circadian rhythm, were also affected by ALAN. ALAN influenced the light signalling at dusk/night in P. oceanica, including that of shorter blue wavelengths, through the ELF3-LUX1-ZTL regulatory network, and suggested that the daily perturbation of internal clock orthologs in seagrass might have caused the recruitment of PoSEND33 and PoPSBS genes to mitigate the repercussions of a nocturnal stress on photosynthesis during the day. A long-lasting impairment of gene fluctuations in sites characterised by ALAN could explain the reduced growth of the seagrass leaves when these were transferred into controlled conditions and without lighting during the night. Our results highlight the potential contribution of ALAN to the global loss of seagrass meadows, posing questions about key interactions with a variety of other human-related stressors in urban areas, in order to develop more efficient strategies to globally preserve these coastal foundation species.


Subject(s)
Acceptance and Commitment Therapy , Alismatales , Humans , Light Pollution , Alismatales/genetics , Anthropogenic Effects , Gene Expression
2.
Oecologia ; 172(2): 505-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23104272

ABSTRACT

Despite the progressive accumulation of exotic species in natural communities, little effort has been devoted to elucidating the mechanisms underpinning the coexistence of invaders in environmentally and biologically heterogeneous systems. The exotic seaweeds, Asparagopsis taxiformis and Caulerpa racemosa, exhibit a segregated distribution on Mediterranean rocky reefs. A. taxiformis dominates assemblages in topographically complex habitats, but is virtually absent on homogenous platforms. In contrast, C. racemosa achieves extensive cover in both types of habitat. We assessed whether differences in their distribution were generated by biotic interactions (between invaders and/or between invaders and natives) or by environmental constraints. Three models were proposed to explain seaweed distribution patterns: (1) invaders inhibit one another; (2) native assemblages, differing between complex and simple habitats, prevent the establishment/spread of one invader, but not that of the other; and (3) environmental conditions regulate the establishment/persistence of the seaweeds in different habitats. We removed the dominant invader and resident assemblages in each type of habitat. Moreover, A. taxiformis thalli were transplanted into the habitat dominated by C. racemosa to establish whether its failure to colonize the simple habitat was due to the lack of propagules or post-recruitment mortality. C. racemosa spread in the complex habitat was not influenced by the removal of resident assemblages, but it was slightly enhanced by A. taxiformis removal. Neither C. racemosa removal nor that of resident assemblages promoted A. taxiformis colonization and survival in simple habitats. Our results suggest that heterogeneity in environmental conditions can promote invader coexistence by mitigating the effects of negative biotic interactions. Therefore, the accumulation of introduced species in native communities does not necessarily imply established invaders fostering further invasion.


Subject(s)
Caulerpa/physiology , Introduced Species , Rhodophyta/physiology , Seaweed , Ecosystem , Mediterranean Sea , Models, Biological , Population Dynamics
3.
J Exp Mar Biol Ecol ; 255(1): 1-19, 2000 Dec 01.
Article in English | MEDLINE | ID: mdl-11090849

ABSTRACT

The extensive presence of artificial reefs in marine coastal habitats demands a better understanding of the extent to which these structures can be considered surrogates of natural rocky shores for populations of plants and animals. The primary aim of this study was to test the hypothesis that removing limpets from the midlittoral of artificial breakwaters in the northwest Mediterranean led to changes in assemblages similar to those observed on rocky shores in the same area. Orthogonal combinations of the presence/absence of two species of limpets, P. aspera and P rustica, were produced using manual removals from June 1997 to February 1998. To test the hypothesis that the effects of limpets were variable at spatial scales comparable to those investigated on rocky shores, we repeated the experiment at two locations tens of kilometres apart, and on two reefs within each location a few kilometres apart. The results revealed strong and relatively consistent negative effects of limpets on filamentous algae, whereas interactions with other members of assemblages were complex and variable. Several taxa (Cyanophyta, encrusting and articulated coralline algae, Ralfsia and Rissoella) were abundant at one location but nearly absent at the other. This large-scale variability in patterns of distribution generated inconsistencies in the effects of limpets between locations. Within locations, several effects of P. aspera and P. rustica were observed, ranging from independent effects on some organisms, to additive or interactive effects on others. Apparently, the removal of filamentous algae by limpets resulted in positive indirect effects on Ralfsia and Rissoella. Collectively, these effects were comparable to those described for rocky shores in the northwest Mediterranean. The processes accounting for large-scale variation in grazing, however, appeared different between the natural and the artificial habitat.

4.
Oecologia ; 123(3): 406-417, 2000 May.
Article in English | MEDLINE | ID: mdl-28308596

ABSTRACT

This study examined the interactive effects of grazing by limpets and inclination of the substratum in maintaining differences between mid-shore and low-shore assemblages of algae in the northwest Mediterranean, at different scales of space and through time. Alternative models leading to different predictions about these effects were proposed and tested. Limpets were excluded by fences from areas of the substratum at mid levels on the shore. The response of algal assemblages to this manipulation was compared with control and enclosure plots at the same level, and with unmanipulated plots in the low shore where limpets are less abundant. The effects of limpets were examined at several replicated sites (0.1-4 km apart) for each slope of the substratum (nearly horizontal vs vertical), at different locations (hundreds of kilometres apart) and at different times. Individual taxa responded differently to limpet exclusion. The percentage cover of the coarsely branched and filamentous algae increased significantly in exclosure plots, in some loser reaching values found on the low shore. These patterns, however, varied greatly from shore to shore and significant effects were found both on horizontal and vertical substrata. Multivariate analyses indicated that grazing by limpets accounted for about 20% of the differences between mid-shore and low-shore assemblages. This effect was independent of substratum inclination and was consistent in space and time, suggesting that physical conditions were not as stressful for macroalgae on vertical substrata as initially supposed. Variable recruitment of algae is proposed as a possible explanation for the lack of consistency in the effects of limpets at the scale of the shore. The results of this study emphasize the need for multiple-scale analyses of the interactive effects of physical and biological factors to understand the organization of natural assemblages.

SELECTION OF CITATIONS
SEARCH DETAIL