Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
J Biomed Semantics ; 13(1): 12, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468846

ABSTRACT

BACKGROUND: The COVID-19 pandemic has challenged healthcare systems and research worldwide. Data is collected all over the world and needs to be integrated and made available to other researchers quickly. However, the various heterogeneous information systems that are used in hospitals can result in fragmentation of health data over multiple data 'silos' that are not interoperable for analysis. Consequently, clinical observations in hospitalised patients are not prepared to be reused efficiently and timely. There is a need to adapt the research data management in hospitals to make COVID-19 observational patient data machine actionable, i.e. more Findable, Accessible, Interoperable and Reusable (FAIR) for humans and machines. We therefore applied the FAIR principles in the hospital to make patient data more FAIR. RESULTS: In this paper, we present our FAIR approach to transform COVID-19 observational patient data collected in the hospital into machine actionable digital objects to answer medical doctors' research questions. With this objective, we conducted a coordinated FAIRification among stakeholders based on ontological models for data and metadata, and a FAIR based architecture that complements the existing data management. We applied FAIR Data Points for metadata exposure, turning investigational parameters into a FAIR dataset. We demonstrated that this dataset is machine actionable by means of three different computational activities: federated query of patient data along open existing knowledge sources across the world through the Semantic Web, implementing Web APIs for data query interoperability, and building applications on top of these FAIR patient data for FAIR data analytics in the hospital. CONCLUSIONS: Our work demonstrates that a FAIR research data management plan based on ontological models for data and metadata, open Science, Semantic Web technologies, and FAIR Data Points is providing data infrastructure in the hospital for machine actionable FAIR Digital Objects. This FAIR data is prepared to be reused for federated analysis, linkable to other FAIR data such as Linked Open Data, and reusable to develop software applications on top of them for hypothesis generation and knowledge discovery.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Hospitals , Humans , Metadata , Semantic Web
2.
Stud Health Technol Inform ; 279: 144-146, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33965931

ABSTRACT

BACKGROUND: Integration of heterogenous resources is key for Rare Disease research. Within the EJP RD, common Application Programming Interface specifications are proposed for discovery of resources and data records. This is not sufficient for automated processing between RD resources and meeting the FAIR principles. OBJECTIVE: To design a solution to improve FAIR for machines for the EJP RD API specification. METHODS: A FAIR Data Point is used to expose machine-actionable metadata of digital resources and it is configured to store its content to a semantic database to be FAIR at the source. RESULTS: A solution was designed based on grlc server as middleware to implement the EJP RD API specification on top of the FDP. CONCLUSION: grlc reduces potential API implementation overhead faced by maintainers who use FAIR at the source.


Subject(s)
Rare Diseases , Software , Databases, Factual , Humans , Internet , Metadata , Semantics
3.
F1000Res ; 9: 136, 2020.
Article in English | MEDLINE | ID: mdl-32308977

ABSTRACT

We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.


Subject(s)
Biological Science Disciplines , Computational Biology , Semantic Web , Data Mining , Metadata , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL