Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Type of study
Language
Publication year range
1.
Elife ; 132024 Sep 02.
Article in English | MEDLINE | ID: mdl-39221775

ABSTRACT

BTB (bric-a-brack, Tramtrack, and broad complex) is a diverse group of protein-protein interaction domains found within metazoan proteins. Transcription factors contain a dimerizing BTB subtype with a characteristic N-terminal extension. The Tramtrack group (TTK) is a distinct type of BTB domain, which can multimerize. Single-particle cryo-EM microscopy revealed that the TTK-type BTB domains assemble into a hexameric structure consisting of three canonical BTB dimers connected through a previously uncharacterized interface. We demonstrated that the TTK-type BTB domains are found only in Arthropods and have undergone lineage-specific expansion in modern insects. The Drosophila genome encodes 24 transcription factors with TTK-type BTB domains, whereas only four have non-TTK-type BTB domains. Yeast two-hybrid analysis revealed that the TTK-type BTB domains have an unusually broad potential for heteromeric associations presumably through a dimer-dimer interaction interface. Thus, the TTK-type BTB domains are a structurally and functionally distinct group of protein domains specific to Arthropodan transcription factors.


Subject(s)
Arthropods , Protein Multimerization , Transcription Factors , Animals , Arthropods/metabolism , Arthropods/genetics , Cryoelectron Microscopy , Drosophila , Protein Domains , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Two-Hybrid System Techniques
2.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003588

ABSTRACT

A central event in the pathogenesis of Alzheimer's disease (AD) is the accumulation of senile plaques composed of aggregated amyloid-ß (Aß) peptides. The main class of drugs currently used for the treatment of AD are the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. In this study, it has been shown that Aß augmented AChE activity in vitro, maximum activation of 548 ± 5% was achieved following 48 h of incubation with 10 µM of Aß1-40, leading to a 7.7-fold increase in catalytic efficiency. The observed non-competitive type of AChE activation by Aß1-40 was associated with increased Vmax and unchanged Km. Although BChE activity also increased following incubation with Aß1-40, this was less efficiently achieved as compared with AChE. Ex vivo electrophysiological experiments showed that 10 µM of Aß1-40 significantly decreased the effect of the AChE inhibitor huperzine A on the synaptic potential parameters.


Subject(s)
Alzheimer Disease , Cholinesterase Inhibitors , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Acetylcholinesterase , Amyloid beta-Peptides , Butyrylcholinesterase , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology
3.
Structure ; 30(7): 1004-1015.e4, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35580610

ABSTRACT

ZAD is a C4 zinc-coordinating domain often found at the N-terminus mostly of arthropodan transcription factors with multiple C2H2 zinc-finger domains involved in the regulation of chromosome architecture and promotor activity. ZADs predominantly form homodimers and have low primary sequence similarity. We obtained three crystal structures of the most phylogenetically distant Drosophila ZADs and structure of the only known ZAD-like domain from a mammalian protein (ZNF276). All ZAD structures demonstrate unity of the spatial fold as well as some unique structural features. The specific homodimerization of ZAD is primarily determined by the position and size of secondary structural elements and is further strengthened by a number of unique interactions between subunits. Structural comparison allowed for unraveling key sequence features underlying the similarity of the spatial fold. These features result in a broad variety of ZADs in Arthropod C2H2 proteins, allowing for the emergence of a wide range of highly specific homodimers.


Subject(s)
Drosophila Proteins , Zinc Fingers , Animals , Drosophila/metabolism , Drosophila Proteins/metabolism , Mammals/metabolism , Transcription Factors/metabolism , Zinc/metabolism , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL