Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Mol Ecol ; 25(15): 3731-51, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27238387

ABSTRACT

The California Floristic Province (CFP) in western North America is a globally significant biodiversity hotspot. Elucidating patterns of endemism and the historical drivers of this diversity has been an important challenge of comparative phylogeography for over two decades. We generated phylogenomic data using ddRADseq to examine genetic structure in Uroctonus forest scorpions, an ecologically restricted and dispersal-limited organism widely distributed across the CFP north to the Columbia River. We coupled our genetic data with species distribution models (SDMs) to determine climatically suitable areas for Uroctonus both now and during the Last Glacial Maximum. Based on our analyses, Uroctonus is composed of two major genetic groups that likely diverged over 2 million years ago. Each of these groups itself contains numerous genetic groups that reveal a pattern of vicariance and microendemism across the CFP. Migration rates among these populations are low. SDMs suggest forest scorpion habitat has remained relatively stable over the last 21 000 years, consistent with the genetic data. Our results suggest tectonic plate rafting, mountain uplift, river drainage formation and climate-induced habitat fragmentation have all likely played a role in the diversification of Uroctonus. The intricate pattern of genetic fragmentation revealed across a temporal continuum highlights the potential of low-dispersing species to shed light on small-scale patterns of biodiversity and the underlying processes that have generated this diversity in biodiversity hotspots.


Subject(s)
Biological Evolution , Genetics, Population , Phylogeny , Scorpions/genetics , Animals , California , Forests , Genomics , Scorpions/classification
2.
Ecology ; 92(2): 408-21, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21618920

ABSTRACT

Studies of the distribution of elusive forest wildlife have suffered from the confounding of true presence with the uncertainty of detection. Occupancy modeling, which incorporates probabilities of species detection conditional on presence, is an emerging approach for reducing observation bias. However, the current likelihood modeling framework is restrictive for handling unexplained sources of variation in the response that may occur when there are dependence structures such as smaller sampling units that are nested within larger sampling units. We used multilevel Bayesian occupancy modeling to handle dependence structures and to partition sources of variation in occupancy of sites by terrestrial salamanders (family Plethodontidae) within and surrounding an earlier wildfire in western Oregon, USA. Comparison of model fit favored a spatial N-mixture model that accounted for variation in salamander abundance over models that were based on binary detection/non-detection data. Though catch per unit effort was higher in burned areas than unburned, there was strong support that this pattern was due to a higher probability of capture for individuals in burned plots. Within the burn, the odds of capturing an individual given it was present were 2.06 times the odds outside the burn, reflecting reduced complexity of ground cover in the burn. Ther was weak support that true occupancy was lower within the burned area. While the odds of occupancy in the burn were 0.49 times the odds outside the burn among the five species, the magnitude of variation attributed to the burn was small in comparison to variation attributed to other landscape variables and to unexplained, spatially autocorrelated random variation. While ordinary occupancy models may separate the biological pattern of interest from variation in detection probability when all sources of variation are known, the addition of random effects structures for unexplained sources of variation in occupancy and detection probability may often more appropriately represent levels of uncertainty.


Subject(s)
Ecosystem , Fires , Models, Biological , Urodela/physiology , Animals , Computer Simulation , Demography
3.
Mycologia ; 100(2): 171-80, 2008.
Article in English | MEDLINE | ID: mdl-18592894

ABSTRACT

We assessed the diversity and phylogeny of Saprolegniaceae on amphibian eggs from the Pacific Northwest, with particular focus on Saprolegnia ferax, a species implicated in high egg mortality. We identified isolates from eggs of six amphibians with the internal transcribed spacer (ITS) and 5.8S gene regions and BLAST of the GenBank database. We identified 68 sequences as Saprolegniaceae and 43 sequences as true fungi from at least nine genera. Our phylogenetic analysis of the Saprolegniaceae included isolates within the genera Saprolegnia, Achlya and Leptolegnia. Our phylogeny grouped S. semihypogyna with Achlya rather than with the Saprolegnia reference sequences. We found only one isolate that grouped closely with S. ferax, and this came from a hatchery-raised salmon (Idaho) that we sampled opportunistically. We had representatives of 7-12 species and three genera of Saprolegniaceae on our amphibian eggs. Further work on the ecological roles of different species of Saprolegniaceae is needed to clarify their potential importance in amphibian egg mortality and potential links to population declines.


Subject(s)
Amphibians/microbiology , DNA, Ribosomal Spacer/genetics , Oomycetes/genetics , Ovum/microbiology , Phylogeny , Animals , Northwestern United States , Oomycetes/classification , Oomycetes/isolation & purification , Saprolegnia/classification , Saprolegnia/genetics , Saprolegnia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL