Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Sci Adv ; 10(4): eadj3786, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38266077

ABSTRACT

Adeno-associated viruses (AAVs) hold tremendous promise as delivery vectors for gene therapies. AAVs have been successfully engineered-for instance, for more efficient and/or cell-specific delivery to numerous tissues-by creating large, diverse starting libraries and selecting for desired properties. However, these starting libraries often contain a high proportion of variants unable to assemble or package their genomes, a prerequisite for any gene delivery goal. Here, we present and showcase a machine learning (ML) method for designing AAV peptide insertion libraries that achieve fivefold higher packaging fitness than the standard NNK library with negligible reduction in diversity. To demonstrate our ML-designed library's utility for downstream engineering goals, we show that it yields approximately 10-fold more successful variants than the NNK library after selection for infection of human brain tissue, leading to a promising glial-specific variant. Moreover, our design approach can be applied to other types of libraries for AAV and beyond.


Subject(s)
Dependovirus , Genetic Therapy , Humans , Dependovirus/genetics , Peptide Library , Brain , Machine Learning
2.
Genome Biol ; 24(1): 218, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784130

ABSTRACT

Characterizing differences in sequences between two conditions, such as with and without drug exposure, using high-throughput sequencing data is a prevalent problem involving quantifying changes in sequence abundances, and predicting such differences for unobserved sequences. A key shortcoming of current approaches is their extremely limited ability to share information across related but non-identical reads. Consequently, they cannot use sequencing data effectively, nor be directly applied in many settings of interest. We introduce model-based enrichment (MBE) to overcome this shortcoming. We evaluate MBE using both simulated and real data. Overall, MBE improves accuracy compared to current differential analysis methods.

SELECTION OF CITATIONS
SEARCH DETAIL