Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Article in English | MEDLINE | ID: mdl-34237158

ABSTRACT

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Subject(s)
Adrenoleukodystrophy , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/therapeutic use , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Animals , Disease Models, Animal , Homeostasis , Mice , Mitochondria/metabolism , Nuclear Receptor Interacting Protein 1
2.
Brain Pathol ; 30(5): 945-963, 2020 09.
Article in English | MEDLINE | ID: mdl-32511826

ABSTRACT

Biotin is an essential cofactor for carboxylases that regulates the energy metabolism. Recently, high-dose pharmaceutical-grade biotin (MD1003) was shown to improve clinical parameters in a subset of patients with chronic progressive multiple sclerosis. To gain insight into the mechanisms of action, we investigated the efficacy of high-dose biotin in a genetic model of chronic axonopathy caused by oxidative damage and bioenergetic failure, the Abcd1- mouse model of adrenomyeloneuropathy. High-dose biotin restored redox homeostasis driven by NRF-2, mitochondria biogenesis and ATP levels, and reversed axonal demise and locomotor impairment. Moreover, we uncovered a concerted dysregulation of the transcriptional program for lipid synthesis and degradation in the spinal cord likely driven by aberrant SREBP-1c/mTORC1signaling. This resulted in increased triglyceride levels and lipid droplets in motor neurons. High-dose biotin normalized the hyperactivation of mTORC1, thus restoring lipid homeostasis. These results shed light into the mechanism of action of high-dose biotin of relevance for neurodegenerative and metabolic disorders.


Subject(s)
Adrenoleukodystrophy/therapy , Biotin/pharmacology , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily D, Member 1/metabolism , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/metabolism , Animals , Axons/metabolism , Biotin/metabolism , Cell Line , Disease Models, Animal , Energy Metabolism , Homeostasis , Humans , Lipids , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction/drug effects , Oxidative Stress/physiology , Sterol Regulatory Element Binding Protein 1/metabolism
3.
EMBO Mol Med ; 10(8)2018 08.
Article in English | MEDLINE | ID: mdl-29997171

ABSTRACT

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model (Abcd1 null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin. Here, we identify an impaired NRF2 response caused by aberrant activity of GSK-3ß. We find that GSK-3ß inhibitors can significantly reactivate the blunted NRF2 response in patients' fibroblasts. In the mouse models (Abcd1- and Abcd1-/Abcd2-/- mice), oral administration of dimethyl fumarate (DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclerosis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure, (iii) oxidative damage, and (iv) inflammation, highlighting an intricate cross-talk governing energetic and redox homeostasis in X-ALD Importantly, DMF halted axonal degeneration and locomotor disability suggesting that therapies activating NRF2 hold therapeutic potential for X-ALD and other axonopathies with impaired GSK-3ß/NRF2 axis.


Subject(s)
Adrenoleukodystrophy/drug therapy , Antioxidants/therapeutic use , Dimethyl Fumarate/therapeutic use , Glycogen Synthase Kinase 3 beta/metabolism , NF-E2-Related Factor 2/metabolism , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Adrenoleukodystrophy/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Dimethyl Fumarate/administration & dosage , Disease Models, Animal , Gliosis/drug therapy , Humans , Male , Mice , Mice, Knockout , Organelle Biogenesis , Oxidative Stress/physiology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
4.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23794606

ABSTRACT

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Subject(s)
Adrenoleukodystrophy/drug therapy , Axons/drug effects , Hypoglycemic Agents/therapeutic use , Nerve Degeneration/drug therapy , Thiazolidinediones/therapeutic use , ATP Binding Cassette Transporter, Subfamily D, Member 1 , ATP-Binding Cassette Transporters/genetics , Adrenoleukodystrophy/genetics , Adrenoleukodystrophy/pathology , Animals , Axons/metabolism , Axons/pathology , Disease Models, Animal , Fatty Acids/metabolism , Glutathione Reductase/metabolism , Humans , Hypoglycemic Agents/pharmacology , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pioglitazone , Thiazolidinediones/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL