Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Article in English | MEDLINE | ID: mdl-35464888

ABSTRACT

Background and purpose: The Ethos system has enabled online adaptive radiotherapy (oART) by implementing an automated treatment planning system (aTPS) for both intensity-modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) plan creation. The purpose of this study is to evaluate the quality of aTPS plans in the pelvic region. Material and Methods: Sixty patients with anal (n = 20), rectal (n = 20) or prostate (n = 20) cancer were retrospectively re-planned with the aTPS. Three IMRT (7-, 9- and 12-field) and two VMAT (2 and 3 arc) automatically generated plans (APs) were created per patient. The duration of the automated plan generation was registered. The best IMRT-AP and VMAT-AP for each patient were selected based on target coverage and dose to organs at risk (OARs). The AP quality was analyzed and compared to corresponding clinically accepted and manually generated VMAT plans (MPs) using several clinically relevant dose metrics. Calculation-based pre-treatment plan quality assurance (QA) was performed for all plans. Results: The median total duration to generate the five APs with the aTPS was 55 min, 39 min and 35 min for anal, prostate and rectal plans, respectively. The target coverage and the OAR sparing were equivalent for IMRT-APs and VMAT-MPs, while VMAT-Aps.demonstrated lower target dose homogeneity and higher dose to some OARs. Both conformity and homogeneity index were equivalent (rectal) or better (anal and prostate) for IMRT-APs compared to VMAT-MPs. All plans passed the patient-specific QA tolerance limit. Conclusions: The aTPS generates plans comparable to MPs within a short time-frame which is highly relevant for oART treatments.

2.
Radiother Oncol ; 171: 37-42, 2022 06.
Article in English | MEDLINE | ID: mdl-35358605

ABSTRACT

BACKGROUND AND PURPOSE: Online adaptive radiotherapy (oART) potentially reduces the dose to organs at risk (OARs) as the planning target volume (PTV) margins are reduced compared to a non-adaptive approach (non-ART). This study evaluates the feasibility and dosimetric impact of cone-beam computed tomography (CBCT)-guided oART of urinary bladder cancer for the first patients treated, using patient-specific margins. MATERIALS AND METHODS: Sixteen consecutive patients with muscle-invasive bladder cancer received two or more (median = 23) fractions as oART, and remaining fractions as non-ART. The non-ART fractions were delivered with standard population-based margins, while reduced patient-specific margins based on intra-fractional variations extracted from 2-4 fractions were applied to the primary PTV (PTV-T) during the oART fractions. Target volume and coverage, and dose to OARs were compared between non-ART and oART plans, and the oART procedure time was recorded. RESULTS: In total, 297/512 fractions were delivered as oART with full re-optimization to the anatomy of the day. The median (interquartile range, IQR) oART procedure time, measured from the end of CBCT generation to completion of plan review, and quality assurance was 13.9 (11.9;16.6) min. The median (IQR) volume reduction in PTV-T volume was 33.9 (24.2;45.0)%, comparing oART and non-ART plans, resulting in median (IQR) reductions in bowel bag V45Gy of 18.8 (12.7;27.9)% and rectum V50Gy of 70.7 (35.9;94.8)%. By re-optimizing the plan to the daily anatomy, full target coverage was achieved at all oART fractions. CONCLUSIONS: oART resulted in large reductions in treatment volumes and doses to OARs, compared to non-ART, while ensuring target coverage. This indicates potential reductions in gastrointestinal toxicity.


Subject(s)
Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Urinary Bladder Neoplasms , Cone-Beam Computed Tomography/methods , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Urinary Bladder Neoplasms/radiotherapy
3.
Strahlenther Onkol ; 198(5): 436-447, 2022 05.
Article in English | MEDLINE | ID: mdl-34528112

ABSTRACT

PURPOSE: The purpose of this study was to evaluate our 2 years' experience with single-isocenter, non-coplanar, volumetric modulated arc therapy (VMAT) for brain metastasis (BM) stereotactic radiosurgery (SRS). METHODS: A total of 202 patients treated with the VMAT SRS solution were analyzed retrospectively. Plan quality was assessed for 5 mm (120) and 2.5 mm (high-definition, HD) central leaf width multileaf collimators (MLCs). For BMs at varying distances from the plan isocenter, the geometric offset from the ideal position for two image-guided radiotherapy workflows was calculated. In the workflow with ExacTrac (BrainLAB, München, Germany; W­ET), patient positioning errors were corrected at each couch rotation. In the workflow without ExacTrac (W-noET), only the initial patient setup correction was considered. The dose variation due to rotational errors was simulated for multiple-BM plans with the HD-MLC. RESULTS: Plan conformity and quality assurance were equivalent for plans delivered with the two MLCs while the HD-MLC plans provided better healthy brain tissue (BmP) sparing. 95% of the BMs had residual intrafractional setup errors ≤ 2 mm for W­ET and 68% for W­noET. For small BM (≤1 cc) situated >3 cm from the plan isocenter, the dose received by 95% of the BM decreased in median (interquartile range) by 6.3% (2.8-8.8%) for a 1-degree rotational error. CONCLUSION: This study indicates that the HD-MLC is advantageous compared to the 120-MLC for sparing healthy brain tissue. When a 2-mm margin is applied, W­noET is sufficient to ensure coverage of BM situated ≤ 3 cm of the plan isocenter, while for BM further away, W­ET is recommended.


Subject(s)
Brain Neoplasms , Radiotherapy, Intensity-Modulated , Brain Neoplasms/secondary , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
4.
Phys Imaging Radiat Oncol ; 17: 1-7, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33898770

ABSTRACT

BACKGROUND AND PURPOSE: Studies have demonstrated the potential of online adaptive radiotherapy (oART). However, routine use has been limited due to resource demanding solutions. This study reports on experiences with oART in the pelvic region using a novel cone-beam computed tomography (CBCT)-based, artificial intelligence (AI)-driven solution. MATERIAL AND METHODS: Automated pre-treatment planning for thirty-nine pelvic cases (bladder, rectum, anal, and prostate), and one hundred oART simulations were conducted in a pre-clinical release of Ethos (Varian Medical Systems, Palo Alto, CA). Plan quality, AI-segmentation accuracy, oART feasibility and an integrated calculation-based quality assurance solution were evaluated. Experiences from the first five clinical oART patients (three bladder, one rectum and one sarcoma) are reported. RESULTS: Auto-generated pre-treatment plans demonstrated similar planning target volume (PTV) coverage and organs at risk doses, compared to institution reference. More than 75% of AI-segmentations during simulated oART required none or minor editing and the adapted plan was superior in 88% of cases. Limitations in AI-segmentation correlated to cases where AI model training was lacking. The five first treated patients complied well with the median adaptive procedure duration of 17.6 min (from CBCT acceptance to treatment delivery start). The treated bladder patients demonstrated a 42% median primary PTV reduction, indicating a 24%-30% reduction in V45Gy to the bowel cavity, compared to non-ART. CONCLUSIONS: A novel commercial oART solution was demonstrated feasible for various pelvic sites. Clinically acceptable AI-segmentation and auto-planning enabled adaptation within reasonable timeslots. Possibilities for reduced PTVs observed for bladder cancer indicated potential for toxicity reductions.

5.
PLoS One ; 12(1): e0168395, 2017.
Article in English | MEDLINE | ID: mdl-28045991

ABSTRACT

Low-energy X-rays induce Auger cascades by photoelectric absorption in iodine present in the DNA of cells labeled with 5-iodo-2'-deoxyuridine (IUdR). This photoactivation therapy results in enhanced cellular sensitivity to radiation which reaches its maximum with 50 keV photons. Synchrotron core facilities are the only way to generate such monochromatic beams. However, these structures are not adapted for the routine treatment of patients. In this study, we generated two beams emitting photon energy means of 42 and 50 keV respectively, from a conventional 225 kV X-ray source. Viability assays performed after pre-exposure to 10 µM of IUdR for 48h suggest that complex lethal damage is generated after low energy photons irradiation compared to 137Cs irradiation (662KeV). To further decipher the molecular mechanisms leading to IUdR-mediated radiosensitization, we analyzed the content of DNA damage-induced foci in two glioblastoma cell lines and showed that the decrease in survival under these conditions was correlated with an increase in the content of DNA damage-induced foci in cell lines. Moreover, the follow-up of repair kinetics of the induced double-strand breaks showed the maximum delay in cells labeled with IUdR and exposed to X-ray irradiation. Thus, there appears to be a direct relationship between the reduction of radiation survival parameters and the production of DNA damage with impaired repair of these breaks. These results further support the clinical potential use of a halogenated pyrimidine analog combined with low-energy X-ray therapy.


Subject(s)
Cell Survival/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Radiation , Idoxuridine/pharmacology , Radiation Tolerance/drug effects , Radiation-Sensitizing Agents/pharmacology , Animals , Cell Line, Tumor , Cesium Radioisotopes , Humans , Kinetics , Photons , Rats , Synchrotrons , Tumor Suppressor p53-Binding Protein 1/metabolism , X-Rays
6.
Invest Radiol ; 50(4): 212-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25275834

ABSTRACT

OBJECTIVES: The purposes of this study were to assess the reliability of parametric maps from dynamic contrast-enhanced ultrasound (DCE-US) to reflect the heterogeneous distribution of intratumoral vascularization and to predict the tissue features linked to vasculature. This study was designed to compare DCE-US parametric maps with histologic vascularity measurements. MATERIALS AND METHODS: Dynamic contrast-enhanced ultrasound was performed on 17 melanoma-bearing nude mice after a 0.1-mL bolus injection of SonoVue (Bracco SPA, Milan, Italy). The parametric maps were developed from raw linear data to extract pixelwise 2 semiquantitative parameters related to perfusion and blood volume, namely, area under the curve (AUC) and peak intensity (PI). The mathematical method to fit the time-intensity curve for each pixel was a polynomial model used in clinical routine and patented by the team. Regions of interest (ROIs) were drawn on DCE-US parametric maps for whole tumors and for several local areas of 15 mm within each tumor (iROI), the latter reflecting the heterogeneity of intratumoral blood volume. As the criterion standard correlation, microvessel densities (MVDs) were determined for both ROI categories. In detail, for all iROI of 15 mm, MVD and maturity were divided separately for vessels of 0 to 10 µm, 10 to 40 µm, and greater than 40 µm in diameter, and the results were correlated with the ultrasound findings. RESULTS: Among the 17 studied mice, a total of 64 iROIs were analyzed. For the whole-tumor ROI set, AUC and PI values significantly correlated with MVD (rAUC = 0.52 [P = 0.0408] and rPI = 0.70 [P = 0.0026]). In the case of multiple iROI, a strong linear correlation was observed between the DCE-US parameters and the density of vessels ranging in their diameter from 0 to 10 µm (rAUC = 0.68 [P < 0.0001]; rPI = 0.63 [P < 0.0001]), 10 to 40 µm (rAUC = 0.98 [P = 0.0003]; rPI = 0.98 [P = 0.0004]), and greater than 40 µm (rAUC = 0.86 [P = 0.0120]; rPI = 0.92 [P = 0.0034]), respectively. However, the DCE-US parameter values of perfusion and blood volume were not significantly different according to the diameters (AUC: P = 0.1731; PI: P = 0.2918) and maturity of blood vessels. CONCLUSIONS: Parametric maps of DCE-US can be reliably established from raw linear data and reflect the heterogeneous histological measures of vascularization within tumors. In contrast, the values of DCE-US parametric maps (AUC, PI) do not allow deduction of heterogeneous tissue features such as the diameters and maturity of vascular networks.


Subject(s)
Contrast Media , Image Enhancement , Melanoma/blood supply , Melanoma/diagnostic imaging , Phospholipids , Sulfur Hexafluoride , Animals , Area Under Curve , Disease Models, Animal , Mice , Mice, Nude , Reproducibility of Results , Ultrasonography
7.
Radiother Oncol ; 111(1): 63-71, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24721545

ABSTRACT

BACKGROUND: Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. METHODS: The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. RESULTS: In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. CONCLUSION: Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart.


Subject(s)
Amyloidosis/etiology , Cardiomegaly/etiology , Guanine Nucleotide Exchange Factors/metabolism , Heart/radiation effects , Radiation Injuries/etiology , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Calcium/metabolism , Cardiomegaly/metabolism , Cardiomegaly/pathology , Female , Fibrosis/etiology , Fibrosis/metabolism , Fibrosis/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/radiation effects , Radiation Injuries/metabolism , Radiation Injuries/pathology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL