Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.235
Filter
1.
World J Oncol ; 15(4): 579-591, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38993248

ABSTRACT

Background: Lymph node status is a prominent prognostic factor for intrahepatic cholangiocarcinoma (ICC). However, the prognostic value of performing lymph node dissection (LND) in patients with clinical node-negative ICC remains controversial. The aim of this study was to evaluate the clinical value of LND on long-term outcomes in this subgroup of patients. Methods: We retrospectively analyzed patients who underwent radical liver resection for clinically node-negative ICC from three tertiary hepatobiliary centers. The propensity score matching analysis at 1:1 ratio based on clinicopathological data was conducted between patients with and without LND. Recurrence-free survival (RFS) and overall survival (OS) were compared in the matched cohort. Results: Among 303 patients who underwent radical liver resection for ICC, 48 patients with clinically positive nodes were excluded, and a total of 159 clinically node-negative ICC patients were finally eligible for the study, with 102 in the LND group and 57 in the non-LND group. After propensity score matching, two well-balanced groups of 51 patients each were analyzed. No significant difference of median RFS (12.0 vs. 10.0 months, P = 0.37) and median OS (22.0 vs. 26.0 months, P = 0.47) was observed between the LND and non-LND group. Also, LND was not identified as one of the independent risks for survival. Among 51 patients who received LND, 11 patients were with positive lymph nodes (lymph node metastasis (LNM) (+)) and presented significantly worse outcomes than those with LND (-). On the other hand, postoperative adjuvant therapy was the independent risk factor for both RFS (hazard ratio (HR): 0.623, 95% confidence interval (CI): 0.393 - 0.987, P = 0.044) and OS (HR: 0.585, 95% CI: 0.359 - 0.952, P = 0.031). Furthermore, postoperative adjuvant therapy was associated with prolonged survivals of non-LND patients (P = 0.02 for RFS and P = 0.03 for OS). Conclusions: Based on the data, we found that LND did not significantly improve the prognosis of patients with clinically node-negative ICC. Postoperative adjuvant therapy was associated with prolonged survival of ICC patients, especially in non-LND individuals.

2.
Front Pharmacol ; 15: 1388205, 2024.
Article in English | MEDLINE | ID: mdl-38966541

ABSTRACT

Background: The relationship between type 2 diabetes mellitus (T2DM) and osteoporosis (OP) has been widely recognized in recent years, but the mechanism of interaction remains unknown. The aim of this study was to investigate the genetic features and signaling pathways that are shared between T2DM and OP. Methods: We analyzed the GSE76894 and GSE76895 datasets for T2DM and GSE56815 and GSE7429 for OP from the Gene Expression Omnibus (GEO) database to identify shared genes in T2DM and OP, and we constructed coexpression networks based on weighted gene coexpression network analysis (WGCNA). Shared genes were then further analyzed for functional pathway enrichment. We selected the best common biomarkers using the least absolute shrinkage and selection operator (LASSO) algorithm and validated the common biomarkers, followed by RT-PCR, immunofluorescence, Western blotting, and enzyme-linked immunosorbent assay (ELISA) to validate the expression of these hub genes in T2DM and OP mouse models and patients. Results: We found 8,506 and 2,030 DEGs in T2DM and OP, respectively. Four modules were identified as significant for T2DM and OP using WGCNA. A total of 19 genes overlapped with the strongest positive and negative modules of T2DM and OP. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed these genes may be involved in pantothenate and CoA biosynthesis and the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and renin-angiotensin system signaling pathway. The LASSO algorithm calculates the six optimal common biomarkers. RT-PCR results show that LTB, TPBG, and VNN1 were upregulated in T2DM and OP. Immunofluorescence and Western blot show that VNN1 is upregulated in the pancreas and bones of T2DM model mice and osteoporosis model mice. Similarly, the level of VNN1 in the sera of patients with T2DM, OP, and T2DM and OP was higher than that in the healthy group. Conclusion: Based on the WGCNA and LASSO algorithms, we identified genes and pathways that were shared between T2DM and OP. Both pantothenate and CoA biosynthesis and the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate and renin-angiotensin systems may be associated with the pathogenesis of T2DM and OP. Moreover, VNN1 may be a potential diagnostic marker for patients with T2DM complicated by OP. This study provides a new perspective for the systematic study of possible mechanisms of combined OP and T2DM.

3.
Sci Total Environ ; : 174597, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986691

ABSTRACT

The spatial pattern of toxic metals plays a major role in watershed diffuse metal non-point source pollution, particularly during stream sediment transportation at hills mines. This study investigated a typical hilly mine area to quantitatively analyze the characteristics, sensitivities, and influencing factors of toxic elements transported in stream sediments through field research and Geodetector models. The results showed that the spatial patterns of toxic elements in stream sediment transportation at the hills mine area were significantly influenced by water erosion and sulfate. Water erosion and sulfate promoted the transport differences of stream sediment metals from upstream to downstream at the hills mine area. Arsenic, cadmium, mercury, and antimony in the stream sediments at the hills mine exhibited higher coefficients of variation (101 % to 397 %) than those in plain and basin topographies. Potential ecological risks of arsenic and cadmium were assessed as high-risk levels, at 19 % and 64 %, respectively. Metal import in the midstream sediments of the hills mine area was accelerated by strong water erosion. Sulfate and dissolved organic matter (DOM) were highly enriched in stream sediments, with sulfate showing a strong correlation with toxic metals (24 %). Positive responses were observed between arsenic, mercury, antimony, and sulfate in sediments, with sensitivities of 41 %, 25 %, and 16 %, respectively, while cadmium was associated with DOM, with a sensitivity of 46 %. Importantly, water erosion interactions with functional type of mine significantly influenced on the spatial transportation patterns of toxic metals in stream sediments. The interactive influences of sulfate combined with bicarbonate on arsenic, mercury, and antimony and bicarbonate combined with DOM on cadmium were enhanced compared to individual factors (>20 %). This study elucidates the spatial patterns of metals during stream sediment transportation in hills mine and offers the novel insights for developing effective watershed metal management strategies in hilly mine environments.

4.
Hortic Res ; 11(7): uhae141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38988615

ABSTRACT

Vernicia montana is a dioecious plant widely cultivated for high-quality tung oil production and ornamental purposes in the Euphorbiaceae family. The lack of genomic information has severely hindered molecular breeding for genetic improvement and early sex identification in V. montana. Here, we present a chromosome-level reference genome of a male V. montana with a total size of 1.29 Gb and a contig N50 of 3.69 Mb. Genome analysis revealed that different repeat lineages drove the expansion of genome size. The model of chromosome evolution in the Euphorbiaceae family suggests that polyploidization-induced genomic structural variation reshaped the chromosome structure, giving rise to the diverse modern chromosomes. Based on whole-genome resequencing data and analyses of selective sweep and genetic diversity, several genes associated with stress resistance and flavonoid synthesis such as CYP450 genes and members of the LRR-RLK family, were identified and presumed to have been selected during the evolutionary process. Genome-wide association studies were conducted and a putative sex-linked insertion and deletion (InDel) (Chr 2: 102 799 917-102 799 933 bp) was identified and developed as a polymorphic molecular marker capable of effectively detecting the gender of V. montana. This InDel is located in the second intron of VmBASS4, suggesting a possible role of VmBASS4 in sex determination in V. montana. This study sheds light on the genome evolution and sex identification of V. montana, which will facilitate research on the development of agronomically important traits and genomics-assisted breeding.

5.
Front Pediatr ; 12: 1355277, 2024.
Article in English | MEDLINE | ID: mdl-38859980

ABSTRACT

Background: Cardio-Facio-Cutaneous syndrome (CFCS) is a rare autosomal dominant genetic disorder primarily caused by BRAF gene mutations, posing diagnostic challenges due to its multifaceted clinical presentation. Objective: To elucidate the clinical characteristics of pediatric CFCS patients, expanding the phenotypic spectrum to enhance early diagnostic capabilities, while also presenting the relationship between genotye and corresponding phenotype severity. Methods: From January 2015 to March 2022, four children diagnosed with CFCS in Children's Hospital of Chongqing Medical University were included for analysis. Whole exome sequencing (WES) was conducted to identify the types and locations of possible gene mutations. Neurological development was assessed using electroencephalography (EEG), magnetic resonance imaging (MRI) and Gesell developmental evaluation. Results: All four CFCS patients exhibited de novo BRAF gene mutations, manifesting with cardiac malformations, distinctive facial features, skin and hair changes, and neurological abnormalities. WES revealed that the specific BRAF mutations were closely linked to their clinical severity. Three patients displayed milder symptoms (case 1-3, genotype I or II), demonstrating stability or slight improvement, whereas one patient (case 4, genotype III) suffered from a severe phenotype characterized by profound neurological and digestive system impairments, leading to a significantly reduced quality of life and a grim prognosis. Conclusion: In CFCS patients, severe developmental delay and seizures are predominant neurological features, possibly accompanied by continuous spike-and-wave during sleep (CSWS) and severe sleep disturbances. CFCS generally carries a poor prognosis, underscoring the importance of disease awareness and early genetic testing.

6.
Plant Biotechnol J ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861663

ABSTRACT

The length of hypocotyl affects the height of soybean and lodging resistance, thus determining the final grain yield. However, research on soybean hypocotyl length is scarce, and the regulatory mechanisms are not fully understood. Here, we identified a module controlling the transport of sucrose, where sucrose acts as a messenger moved from cotyledon to hypocotyl, regulating hypocotyl elongation. This module comprises four key genes, namely MYB33, SWEET11, SWEET21 and GA2ox8c in soybean. In cotyledon, MYB33 is responsive to sucrose and promotes the expression of SWEET11 and SWEET21, thereby facilitating sucrose transport from the cotyledon to the hypocotyl. Subsequently, sucrose transported from the cotyledon up-regulates the expression of GA2ox8c in the hypocotyl, which ultimately affects the length of the hypocotyl. During the domestication and improvement of soybean, an allele of MYB33 with enhanced abilities to promote SWEET11 and SWEET21 has gradually become enriched in landraces and cultivated varieties, SWEET11 and SWEET21 exhibit high conservation and have undergone a strong purified selection and GA2ox8c is under a strong artificial selection. Our findings identify a new molecular pathway in controlling soybean hypocotyl elongation and provide new insights into the molecular mechanism of sugar transport in soybean.

7.
Adv Sci (Weinh) ; : e2404253, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864316

ABSTRACT

It is an increasingly mature application solution that triboelectric nanogenerator (TENG) supplies power to electronic devices through its power management system (PMS). However, the previous PMS is able to manage a limited voltage magnitude and the energy storage elements are limited to capacitors. This work proposes an ultrahigh voltage PMS (UV-PMS) to realize the charging of commercial lithium cells (LCs) by TENG. The design of UV-PMS enables energy management of TENGs with ultrahigh open-circuit voltages up to 3500 V and boosts the peak charging current from 30.9 µA to 2.77 mA, an increase of 89.64 times. With the introduction of UV-PMS, the effective charging capacity of LC charged by a TENG at a working frequency of 1.5 Hz for 1 h comes to 429.7 µAh, making a 75.3 times enhancement compared to charging by TENG directly. The maximum charging power comes to 1.56 mW. The energy storage efficiency is above 97% and the overall charge efficiency can be maintained at 81.2%. This work provides a reliable strategy for TENG to store energy in LC, and has promising applications in energy storage, LC's life, and self-powered systems.

8.
J Plast Reconstr Aesthet Surg ; 95: 87-91, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38879938

ABSTRACT

BACKGROUND: Chin prosthesis implantation, a cosmetic procedure to correct chin asymmetry, depression, or retraction, is generally safe and simple. However, its long-term effects on surrounding tissues are a concern. This study aimed to use three-dimensional (3D) scanning to classify the mentalis muscle shapes and assess the impact of prosthesis implantation on these muscles. METHOD: This study evaluated 450 eligible female participants. Using three-dimensional imaging, data on the types, thickness, width, and length of the left and right mentalis muscles were collected and summarized. The impact of chin prosthesis on these muscle dimensions was assessed using analysis of variance, and the effect on muscle type was determined using χ2 test. RESULTS: Chin implant placement affected the mentalis muscles, resulting in increased length, thickness, and width. The subjects' mentalis muscles were categorized into 3 types and divided into 7 subtypes. χ2 test results indicated that implantation influences the classification of these muscles. CONCLUSION: Recognizing how implant placement affects the mentalis muscle can guide the development of treatments to mitigate these changes. Additionally, understanding the muscle's morphology enables more precise treatment approaches for patients.

9.
Biomimetics (Basel) ; 9(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38921254

ABSTRACT

The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array (CALA) and two Alvarez lenses. The movement of the CALA and two Alvarez lenses perpendicular to the optical axis is realized by the actuation of the dielectric elastomers (DEs). By adjusting the focal length of the CALA and the two Alvarez lenses, the proposed system can realize continuous zoom imaging without any mechanical movement vertically to the optical axis. The experimental results show that the paraxial magnification of the target can range from ∼0.30× to ∼0.9×. The overall dimensions of the optical imaging part are 54 mm × 36 mm ×60 mm (L × W × H). The response time is 180 ms. The imaging resolution can reach up to 50 lp/mm during the optical zoom process. The proposed continuous optical zoom compound eye imaging system has potential applications in various fields, including large field of view imaging, medical diagnostics, machine vision, and distance detection.

10.
Int J Nanomedicine ; 19: 4957-4976, 2024.
Article in English | MEDLINE | ID: mdl-38828198

ABSTRACT

Background: The "gut-islets axis" is an important endocrine signaling axis that regulates islets function by modulating the gut microbiota and endocrine metabolism within the gut. However, the specific mechanisms and roles of the intestine in islets regulation remain unclear. Recent studies investigated that exosomes derived from gut microbiota can transport signals to remotely regulate islets ß-cell function, suggesting the possibility of novel signaling pathways mediated by gut exosomes in the regulation of the "gut-islet axis.". Methods: The exosomes were isolated from the intestinal enteroendocrine cell-line STC-1cells culture supernatants treated with palmitate acid (PA) or BSA. Metabolic stress models were established by separately subjecting MIN6 cells to PA stimulation and feeding mice with a high-fat diet. Intervention with exosomes in vitro and in vivo to assess the biological effects of exosomes on islets ß cells under metabolic stress. The Mas receptor antagonist A779 and ACE2ko mice were used to evaluate the role of exosomal ACE2. Results: We found ACE2, a molecule that plays a crucial role in the regulation of islets function, is abundantly expressed in exosomes derived from STC-1 under physiological normal condition (NCEO). These exosomes cannot only be taken up by ß-cells in vitro but also selectively transported to the islets in vivo. Following intervention with NCEXO, both Min6 cells in a lipotoxic environment and mice on a high-fat diet exhibited significant improvements in islets ß-cell function and ß-cell mass. Further investigations demonstrated that these protective effects are attributed to exosomal ACE2, as ACE2 inhibits NLRP3 inflammasome activation and reduces ß-cell pyroptosis. Conclusion: ACE2-enriched exosomes from the gut can selectively target islets, subsequently inhibiting NLRP3 inflammasome activation and ß cell pyroptosis, thereby restoring islets ß cell function under metabolic stress. This study provides novel insights into therapeutic strategies for the prevention and treatment of obesity and diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2 , Exosomes , Inflammasomes , Insulin-Secreting Cells , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Animals , Exosomes/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Pyroptosis/drug effects , Pyroptosis/physiology , Angiotensin-Converting Enzyme 2/metabolism , Inflammasomes/metabolism , Inflammasomes/drug effects , Cell Line , Intestine, Small/drug effects , Male , Diet, High-Fat , Mice, Knockout , Enteroendocrine Cells/drug effects , Enteroendocrine Cells/metabolism
11.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895352

ABSTRACT

Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.

12.
Nat Plants ; 10(6): 848-856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38831044

ABSTRACT

The de novo synthesis of genomes has made unprecedented progress and achieved milestones, particularly in bacteria and yeast. However, the process of synthesizing a multicellular plant genome has not progressed at the same pace, due to the complexity of multicellular plant genomes, technical difficulties associated with large genome size and structure, and the intricacies of gene regulation and expression in plants. Here we outline the bottom-up design principles for the de novo synthesis of the Physcomitrium patens (that is, earthmoss) genome. To facilitate international collaboration and accessibility, we have developed and launched a public online design platform called GenoDesigner. This platform offers an intuitive graphical interface enabling users to efficiently manipulate extensive genome sequences, even up to the gigabase level. This tool is poised to greatly expedite the synthesis of the P. patens genome, offering an essential reference and roadmap for the synthesis of plant genomes.


Subject(s)
Bryopsida , Genome, Plant , Bryopsida/genetics , Synthetic Biology/methods , Software
13.
Nat Genet ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834904

ABSTRACT

Unlike megabats, which rely on well-developed vision, microbats use ultrasonic echolocation to navigate and locate prey. To study ultrasound perception, here we compared the auditory cortices of microbats and megabats by constructing reference genomes and single-nucleus atlases for four species. We found that parvalbumin (PV)+ neurons exhibited evident cross-species differences and could respond to ultrasound signals, whereas their silencing severely affected ultrasound perception in the mouse auditory cortex. Moreover, megabat PV+ neurons expressed low levels of complexins (CPLX1-CPLX4), which can facilitate neurotransmitter release, while microbat PV+ neurons highly expressed CPLX1, which improves neurotransmission efficiency. Further perturbation of Cplx1 in PV+ neurons impaired ultrasound perception in the mouse auditory cortex. In addition, CPLX1 functioned in other parts of the auditory pathway in microbats but not megabats and exhibited convergent evolution between echolocating microbats and whales. Altogether, we conclude that CPLX1 expression throughout the entire auditory pathway can enhance mammalian ultrasound neurotransmission.

14.
Environ Sci Technol ; 58(26): 11649-11660, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38872439

ABSTRACT

Brominated byproducts and toxicity generation are critical issues for ozone application to wastewater containing bromide. This study demonstrated that ultraviolet/ozone (UV/O3, 100 mJ/cm2, 1 mg-O3/mg-DOC) reduced the cytotoxicity of wastewater from 14.2 mg of pentol/L produced by ozonation to 4.3 mg of pentol/L (1 mg/L bromide, pH 7.0). The genotoxicity was also reduced from 1.65 to 0.17 µg-4-NQO/L by UV/O3. Compared with that of O3 alone, adsorbable organic bromine was reduced from 25.8 to 5.3 µg/L by UV/O3, but bromate increased from 32.9 to 71.4 µg/L. The UV/O3 process enhanced the removal of pre-existing precursors (highly unsaturated and phenolic compounds and poly aromatic hydrocarbons), while new precursors were generated, yet the combined effect of UV/O3 on precursors did not result in a significant change in toxicity. Instead, UV radiation inhibited HOBr concentration through both rapid O3 decomposition to reduce HOBr production and decomposition of the formed HOBr, thus suppressing the AOBr formation. However, the hydroxyl radical-dominated pathway in UV/O3 led to a significant increase of bromate. Considering both organic bromine and bromate, the UV/O3 process effectively controlled both cytotoxicity and genotoxicity of wastewater to mammalian cells, even though an emphasis should be also placed on managing elevated bromate. Futhermore, other end points are needed to evaluate the toxicity outcomes of the UV/O3 process.


Subject(s)
Bromine , Wastewater , Bromine/chemistry , Bromine/toxicity , Bromates/chemistry , Photochemical Processes , Ultraviolet Rays , Ozone/chemistry , Water Purification/methods , Wastewater/toxicity , Mammals , Animals , CHO Cells , Cricetulus
15.
J Control Release ; 372: 778-794, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38936744

ABSTRACT

Alopecia areata affects over 140 million people worldwide and causes severe psychological distress. The Janus kinase (JAK) inhibitor, tofacitinib, shows significant potential in therapeutic applications for treating alopecia areata; however, the systemic adverse effects of oral administration and low absorption rate at the target site limit its application. Hence, to address this issue, we designed topical formulations of tofacitinib-loaded cationic lipid nanoparticles (TFB-cNLPs) with particle sizes of approximately 200 nm. TFB-cNLPs promoted percutaneous absorption and hair follicle targeting in an ex vivo pig ear model. TFB-cNLP decreased IFN-γ-induced alopecia areata symptoms in an in vitro follicle model by blocking the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. It also reduced the number of CD8+NKG2D+T cells in a C3H mouse model of alopecia areata in vivo, thereby inhibiting the progression of alopecia areata and reversing hair loss. These findings suggest that TFB-cNLP enhanced hair follicle targeting and has the potential for topical treatment or prevention of alopecia areata.

16.
Front Med (Lausanne) ; 11: 1373005, 2024.
Article in English | MEDLINE | ID: mdl-38919938

ABSTRACT

Background: Liver transplantation (LT) is one of the main curative treatments for hepatocellular carcinoma (HCC). Milan criteria has long been applied to candidate LT patients with HCC. However, the application of Milan criteria failed to precisely predict patients at risk of recurrence. As a result, we aimed to establish and validate a deep learning model comparing with Milan criteria and better guide post-LT treatment. Methods: A total of 356 HCC patients who received LT with complete follow-up data were evaluated. The entire cohort was randomly divided into training set (n = 286) and validation set (n = 70). Multi-layer-perceptron model provided by pycox library was first used to construct the recurrence prediction model. Then tabular neural network (TabNet) that combines elements of deep learning and tabular data processing techniques was utilized to compare with Milan criteria and verify the performance of the model we proposed. Results: Patients with larger tumor size over 7 cm, poorer differentiation of tumor grade and multiple tumor numbers were first classified as high risk of recurrence. We trained a classification model with TabNet and our proposed model performed better than the Milan criteria in terms of accuracy (0.95 vs. 0.86, p < 0.05). In addition, our model showed better performance results with improved AUC, NRI and hazard ratio, proving the robustness of the model. Conclusion: A prognostic model had been proposed based on the use of TabNet on various parameters from HCC patients. The model performed well in post-LT recurrence prediction and the identification of high-risk subgroups.

18.
Poult Sci ; 103(7): 103775, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713985

ABSTRACT

Goose circovirus (GoCV), a potential immunosuppressive virus possessing a circular single-stranded DNA genome, is widely distributed in both domesticated and wild geese. This virus infection causes significant economic losses in the waterfowl industry. The codon usage patterns of viruses reflect the evolutionary history and genetic architecture, allowing them to adapt quickly to changes in the external environment, particularly to their hosts. In this study, we retrieved the coding sequences (Rep and Cap) and the genome of GoCV from GenBank, conducting comprehensive research to explore the codon usage patterns in 144 GoCV strains. The overall codon usage of the GoCV strains was relatively similar and exhibited a slight bias. The effective number of codons (ENC) indicated a low overall extent of codon usage bias (CUB) in GoCV. Combined with the base composition and relative synonymous codon usage (RSCU) analysis, the results revealed a bias toward A- and G-ending codons in the overall codon usage. Analysis of the ENC-GC3s plot and neutrality plot suggested that natural selection plays an important role in shaping the codon usage pattern of GoCV, with mutation pressure having a minor influence. Furthermore, the correlations between ENC and relative indices, as well as correspondence analysis (COA), showed that hydrophobicity and geographical distribution also contribute to codon usage variation in GoCV, suggesting the possible involvement of natural selection. In conclusion, GoCV exhibits comparatively slight CUB, with natural selection being the major factor shaping the codon usage pattern of GoCV. Our research contributes to a deeper understanding of GoCV evolution and its host adaptation, providing valuable insights for future basic studies and vaccine design related to GoCV.


Subject(s)
Circovirus , Codon Usage , Geese , Circovirus/genetics , Animals , Geese/virology , Poultry Diseases/virology , Poultry Diseases/genetics , Circoviridae Infections/veterinary , Circoviridae Infections/virology , Selection, Genetic , Host Adaptation/genetics , Adaptation, Physiological/genetics
19.
Vet Parasitol ; 329: 110212, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781831

ABSTRACT

Tick infestations transmit various infectious agents and result in significant socioeconomic consequences. Currently, the primary focus of tick control efforts is identifying potential targets for immune intervention. In a previous study, we identified a highly conserved protein abundant in tick haemolymph extracellular vesicles (EVs) known as translationally controlled tumour protein (TCTP). We have found that native TCTP is present in various tissues of the Rhipicephalus haemaphysaloides tick, including salivary glands, midgut, ovary, and fat body. Notably, TCTP is particularly abundant in the tick ovary and its levels increase progressively from the blood-feeding stage to engorgement. When the TCTP gene was knocked down by RNAi, there was a noticeable delay in ovarian development, and the reproductive performance, in terms of egg quantity and survival, was also hindered. Our investigations have revealed that the observed effects in ovary and eggs in dsRNA-treated ticks are not attributable to cell death mechanisms like apoptosis and autophagy but rather to the reduction in the expression of vitellogenin (Vg1, Vg2, and Vg3) and ferritin (ferritin 1 and ferritin 2) proteins crucial for ovarian development and embryo survival in ticks. Additionally, phylogenetic analysis and structural comparisons of RhTCTP and its orthologues across various tick species, vertebrate hosts, and humans have shown that TCTP is conserved in ticks but differs significantly between ticks and their hosts, particularly in the TCTP_1 and TCTP_2 domains. Overall, TCTP plays a vital role in tick reproductive development and presents itself as a potential target for tick control in both humans and animals.


Subject(s)
Ovary , Oviposition , Rhipicephalus , Tumor Protein, Translationally-Controlled 1 , Animals , Female , Rhipicephalus/genetics , Rhipicephalus/physiology , Rhipicephalus/growth & development , Phylogeny , Vitellogenins/genetics , Vitellogenins/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
20.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2441-2450, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812143

ABSTRACT

This study aims to explore the correlation between intestinal toxicity and composition changes of Euphorbia ebracteolata before and after Terminalia chebula soup(TCS) processing. Intragastric administration was performed on the whole animal model. By using fecal water content, inflammatory causes, and pathological damage of different parts of the intestinal tract of mice as indexes, the differences in intestinal toxicity of dichloromethane extraction of raw E. ebracteolata(REDE), dichloromethane extraction of TCS, and dichloromethane extraction of E. ebracteolata after simulated TCS processing(STREDE) were compared, so as to investigate the effect of TCS processing on the intestinal toxicity of E. ebracteolata. At the same time, the component databases of E. ebracteolata and T. chebula were constructed, and the composition changes of diterpenoids, tannins, and phenolic acids in the three extracted parts were analyzed by HPLC-TOF-MS. HPLC was used to compare the content of four diterpenoids including ent-11α-hydroxyabicta-8(14), 13(15)-dien-16, 12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and jolkinolide E(JNE) in the E. ebracteolata before and after processing and the residue of container wall after processing, so as to investigate the effect of TCS processing on the content and structure of the diterpenoids. The results showed that the REDE group could significantly increase the fecal water content and the release levels of TNF-α and IL-1ß from each intestinal segment, and intestinal tissue damage was accompanied by significant infiltration of inflammatory cells. However, compared with the REDE group, the intestinal tissue damage in the STREDE group was alleviated, and the infiltration of inflammatory cells decreased. The intestinal toxicity significantly decreased. Mass spectrometry analysis showed that there was no significant difference in the content of diterpenoids of REDE before and after simulated TCS processing, but a large number of tannins and phenolic acids were added. The results of HPLC showed that the content of four diterpenoids of E. ebracteo-lata decreased to varying degrees after TCS processing, ranging from-0.35% to-19.74%, and the decreased part mainly remained in the container wall, indicating that the structure of toxic diterpenoids of E. ebracteolata was not changed after TCS processing. The antagonistic effect of tannic and phenolic acids in the TCS may be the main reason for the reduced intestinal toxicity of E. ebracteolata after TCS processing. The TCS processing for E. ebracteolata is scientific.


Subject(s)
Drugs, Chinese Herbal , Euphorbia , Terminalia , Euphorbia/chemistry , Animals , Terminalia/chemistry , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Male , Intestines/drug effects , Intestines/chemistry , Chromatography, High Pressure Liquid , Humans
SELECTION OF CITATIONS
SEARCH DETAIL