Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters








Publication year range
1.
Nat Commun ; 15(1): 7062, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152136

ABSTRACT

Post-translational addition of O-linked N-acetylglucosamine (O-GlcNAc) to proteins is commonly associated with a variety of stress responses and cellular processes in eukaryotes, but its potential roles in bacteria are unclear. Here, we show that protein HmwC acts as an O-GlcNAc transferase (OGT) responsible for O-GlcNAcylation of multiple proteins in Yersinia pestis, a flea-borne pathogen responsible for plague. We identify 64 O-GlcNAcylated proteins (comprising 65 sites) with differential abundance under conditions mimicking the mammalian host (Mh) and flea vector (Fv) environments. Deletion of hmwC, encoding a putative OGT, structurally distinct from any existing member of the GT41 family, results in reduced O-GlcNAcylation, reduced growth, and alterations in virulence properties and survival under stress. Purified HmwC can modify target proteins in vitro using UDP-GlcNAc as sugar donor. One of the target proteins, OsdY, promotes Y. pestis survival under oxidative stress conditions. Thus, our results support that regulation of antioxidative responses through O-GlcNAcylation may be a conserved process shared by prokaryotes and eukaryotes.


Subject(s)
Bacterial Proteins , N-Acetylglucosaminyltransferases , Yersinia pestis , Yersinia pestis/metabolism , Yersinia pestis/genetics , Yersinia pestis/pathogenicity , Yersinia pestis/enzymology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Animals , Virulence , Acetylglucosamine/metabolism , Mice , Antioxidants/metabolism , Protein Processing, Post-Translational , Plague/microbiology , Plague/metabolism , Oxidative Stress , Glycosylation
2.
mSphere ; 9(9): e0033024, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39158304

ABSTRACT

Outer membrane vesicles (OMVs) from Gram-negative bacteria can be used as a vaccine platform to deliver heterologous antigens. Here, the major protective antigens of Yersinia pestis, F1 and LcrV, were fused either with the leader sequence or the transmembrane domain of the outer membrane protein A (OmpA), resulting in chimeric proteins OmpA-ls-F1V and OmpA46-159-F1V, respectively. We show that OmpA-ls-F1V and OmpA46-159-F1V can be successfully delivered into the lumen and membrane of the OMVs of Escherichia coli, respectively. Mutation of ompA but not tolR in E. coli enhanced the delivery efficiency of OmpA-ls-F1V into OMVs. The OmpA-ls-F1V protein comprises up to 20% of the total protein in OMVs derived from the ompA mutant (OMVdA-ALS-F1V), a proportion significantly higher than the 1% observed for OmpA46-159-F1V in OMVs produced by an ompA mutant that expresses OmpA46-159-F1V, referred to as OMVdA-LATM5-F1V. Intramuscular (i.m.) immunization of mice with OMVdA-ALS-F1V induced significantly higher levels of serum anti-LcrV and anti-F1 IgG, and provided higher efficacy in protection against subcutaneous (s.c.) Y. pestis infection compared to OMVdA-LATM5-F1V and the purified recombinant F1V (rF1V) protein adsorbed to aluminum hydroxide. The three-dose i.m. immunization with OMVdA-ALS-F1V, administered at 14-day intervals, provides complete protection to mice against s.c. infection with 130 LD50 of Y. pestis 201 and conferred 80% against intranasal (i.n.) challenge with 11.4 LD50 of Y. pestis 201. Taken together, our findings indicate that the engineered OMVs containing F1V fused with the leader sequence of OmpA provide significantly higher protection than rF1V against both s.c. and i.n. infection of Y. pestis and more balanced Th1/Th2 responses.IMPORTANCEThe two major protective antigens of Y. pestis, LcrV and F1, have demonstrated the ability to elicit systemic and local mucosal immune responses as subunit vaccines. However, these vaccines have failed to provide adequate protection against pneumonic plague in African green monkeys. Here, Y. pestis F1 and LcrV antigens were successfully incorporated into the lumen and the surface of the outer membrane vesicles (OMVs) of E. coli by fusion either with the leader sequence or the transmembrane domain of OmpA. We compared the humoral immune response elicited by these OMV formulations and their protective efficacy in mice against Y. pestis. Our results demonstrate that the plague OMV vaccine candidates can induce robust protective immunity against both s.c. and i.n. Y. pestis infections, surpassing the effectiveness of rF1V. In addition, immunization with OMVs generated a relatively balanced Th1/Th2 immune response compared to rF1V immunization. These findings underscore the potential of OMVs-based plague vaccines for further development.


Subject(s)
Antibodies, Bacterial , Antigens, Bacterial , Bacterial Outer Membrane Proteins , Escherichia coli , Plague Vaccine , Plague , Pore Forming Cytotoxic Proteins , Yersinia pestis , Animals , Plague/prevention & control , Plague/immunology , Antigens, Bacterial/immunology , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/genetics , Escherichia coli/immunology , Yersinia pestis/immunology , Yersinia pestis/genetics , Mice , Pore Forming Cytotoxic Proteins/immunology , Pore Forming Cytotoxic Proteins/genetics , Plague Vaccine/immunology , Plague Vaccine/administration & dosage , Plague Vaccine/genetics , Female , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Mice, Inbred BALB C , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Bacterial Outer Membrane/immunology , Bacterial Proteins
3.
Biochem Biophys Res Commun ; 731: 150363, 2024 10 30.
Article in English | MEDLINE | ID: mdl-39018969

ABSTRACT

Understanding the dynamics of neural networks and their response to external stimuli is crucial for unraveling the mechanisms associated with learning processes. In this study, we hypothesized that electrical stimulation (ES) would lead to significant alterations in the activity patterns of hippocampal neuronal networks and investigated the effects of low-frequency ES on hippocampal neuronal populations using the microelectrode arrays (MEAs). Our findings revealed significant alterations in the activity of hippocampal neuronal networks following low-frequency ES trainings. Post-stimulation, the neural activity exhibited an organized burst firing pattern characterized by increased spike and burst firings, increased synchronization, and enhanced learning behaviors. Analysis of peri-stimulus time histograms (PSTHs) further revealed that low-frequency ES (1Hz) significantly enhanced neural plasticity, thereby facilitating the learning process of cultured neurons, whereas high-frequency ES (>10Hz) impeded this process. Moreover, we observed a substantial increase in correlations and connectivity within neuronal networks following ES trainings. These alterations in network properties indicated enhanced synaptic plasticity and emphasized the positive impact of low-frequency ES on hippocampal neural activities, contributing to the brain's capacity for learning and memory.


Subject(s)
Electric Stimulation , Hippocampus , Learning , Nerve Net , Neuronal Plasticity , Animals , Hippocampus/physiology , Nerve Net/physiology , Learning/physiology , Cells, Cultured , Neuronal Plasticity/physiology , Rats , Neurons/physiology , Action Potentials/physiology , Rats, Sprague-Dawley
4.
mBio ; 15(8): e0107524, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38958447

ABSTRACT

Yersinia pestis has recently evolved into a highly lethal flea-borne pathogen through the pseudogenization of extensive genes and the acquisition of exogenous plasmids. Particularly noteworthy are the newly acquired pPCP1 and pMT1 plasmids, which encode the virulence determinants Pla and Yersinia murine toxin (Ymt), crucial for subcutaneous infection and survival within flea vector of Y. pestis, respectively. This study reveals that Pla can cleave Ymt at K299 both in vivo and in vitro. Y. pestis expressing YmtK299A displays enhanced in vitro biofilm formation and increased blood survival, indicating significant roles of Pla-mediated Ymt cleavage in these phenotypes. Intriguingly, although both the ancestral form of Pla and the prevalent Pla-I259T variant in modern Y. pestis strains are capable of cleaving Ymt at K299, the cleavage efficiency of Pla-I259T is only half that of the ancestral variant. In subcutaneous infection, mice infected with Δymt::ymt-K299A show significantly prolonged survival compared to those infected with Δymt::ymt. Similarly, infection with Δpla::pla-I259T also results in extended survival compared to Δpla::pla infection. These data demonstrate that the I259T substitution of Pla mitigates the enhanced virulence of Y. pestis in mice caused by Pla-mediated Ymt cleavage, thereby prolonging the survival period of infected animals and potentially conferring advantages on the transmission of Y. pestis to the next host. These findings deepen our understanding of the intricate interplay between two newly acquired plasmids and shed light on the positive selection of the Pla-I259T mutation, providing new insights into the virulence dynamics and transmission mechanisms of Y. pestis. IMPORTANCE: The emergence of Y. pestis as a highly lethal pathogen is driven by extensive gene pseudogenization and acquisition of exogenous plasmids pPCP1 and pMT1. However, the interplay between these two plasmids during evolution remains largely unexplored. Our study reveals intricate interactions between Ymt and Pla, two crucial virulence determinants encoded on these plasmids. Pla-mediated cleavage of Ymt significantly decreases Y. pestis survival in mouse blood and enhances its virulence in mice. The prevalent Pla-I259T variant in modern strains displays reduced Ymt cleavage, thereby extending the survival of infected animals and potentially increasing strain transmissibility. Our findings shed light on the nuanced evolution of Y. pestis, wherein reduced cleavage efficiency is a positive selection force, shaping the pathogen's natural trajectory.


Subject(s)
Virulence Factors , Yersinia pestis , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pestis/pathogenicity , Animals , Mice , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism , Plasminogen Activators/genetics , Plasminogen Activators/metabolism , Female , Plague/microbiology , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Plasmids/genetics , Biofilms/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Evolution, Molecular , Mice, Inbred BALB C , Disease Models, Animal
5.
PLoS Pathog ; 20(3): e1012129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547321

ABSTRACT

We recently identified two virulence-associated small open reading frames (sORF) of Yersinia pestis, named yp1 and yp2, and null mutants of each individual genes were highly attenuated in virulence. Plague vaccine strain EV76 is known for strong reactogenicity, making it not suitable for use in humans. To improve the immune safety of EV76, three mutant strains of EV76, Δyp1, Δyp2, and Δyp1&yp2 were constructed and their virulence attenuation, immunogenicity, and protective efficacy in mice were evaluated. All mutant strains were attenuated by the subcutaneous (s.c.) route and exhibited more rapid clearance in tissues than the parental strain EV76. Under iron overload conditions, only the mice infected with EV76Δyp1 survived, accompanied by less draining lymph nodes damage than those infected by EV76. Analysis of cytokines secreted by splenocytes of immunized mice found that EV76Δyp2 induced higher secretion of multiple cytokines including TNF-α, IL-2, and IL-12p70 than EV76. On day 42, EV76Δyp2 or EV76Δyp1&yp2 immunized mice exhibited similar protective efficacy as EV76 when exposed to Y. pestis 201, both via s.c. or intranasal (i.n.) routes of administration. Moreover, when exposed to 200-400 LD50 Y. pestis strain 201Δcaf1 (non-encapsulated Y. pestis), EV76Δyp2 or EV76Δyp1&yp2 are able to afford about 50% protection to i.n. challenges, significantly better than the protection afforded by EV76. On 120 day, mice immunized with EV76Δyp2 or EV76Δyp1&yp2 cleared the i.n. challenge of Y. pestis 201-lux as quickly as those immunized with EV76, demonstrating 90-100% protection. Our results demonstrated that deletion of the yp2 gene is an effective strategy to attenuate virulence of Y. pestis EV76 while improving immunogenicity. Furthermore, EV76Δyp2 is a promising candidate for conferring protection against the pneumonic and bubonic forms of plague.


Subject(s)
Plague Vaccine , Vaccines , Yersinia pestis , Humans , Animals , Mice , Yersinia pestis/genetics , Open Reading Frames , Plague Vaccine/genetics , Cytokines/genetics
6.
Microbiol Spectr ; 11(4): e0046023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37458592

ABSTRACT

Increasing evidence shows that protein lysine acetylation is involved in almost every aspect of cellular physiology in bacteria. Yersinia pestis is a flea-borne pathogen responsible for millions of human deaths in three global pandemics. However, the functional role of lysine acetylation in this pathogen remains unclear. Here, we found more acetylated proteins and a higher degree of acetylation in Y. pestis grown under mammalian host (Mh) conditions than under flea vector (Fv) conditions, suggesting that protein acetylation could significantly change during fleabite transmission. Comparative acetylome analysis of mutants of YfiQ and CobB, the major acetyltransferase and deacetylase of Y. pestis, respectively, identified 23 YfiQ-dependent and 315 CobB-dependent acetylated proteins. Further results demonstrated that acetylation of Lys73 of the SlyA protein, a MarR-family transcriptional regulator, inhibits its binding to the promoter of target genes, including hmsT that encodes diguanylate cyclase responsible for the synthesis of c-di-GMP, and significantly enhances biofilm formation of Y. pestis. Our study presents the first extensive acetylome data of Y. pestis and a critical resource for the functional study of lysine acetylation in this pathogen. IMPORTANCE Yersinia pestis is the etiological agent of plague, historically responsible for three global pandemics. The 2017 plague epidemic in Madagascar was a reminder that Y. pestis remains a real threat in many parts of the world. Plague is a zoonotic disease that primarily infects rodents via fleabite, and transmission of Y. pestis from infected fleas to mammals requires rapid adaptive responses to adverse host environments to establish infection. Our study provides the first global profiling of lysine acetylation derived from mass spectrometry analysis in Y. pestis. Our data set can serve as a critical resource for the functional study of lysine acetylation in Y. pestis and provides new molecular insight into the physiological role of lysine acetylation in proteins. More importantly, we found that acetylation of Lys73 of SlyA significantly promotes biofilm formation of Y. pestis, indicating that bacteria can use lysine acetylation to fine-tune the expression of genes to improve adaptation.


Subject(s)
Plague , Siphonaptera , Yersinia pestis , Animals , Humans , Yersinia pestis/metabolism , Plague/microbiology , Lysine/metabolism , Acetylation , Siphonaptera/microbiology , Biofilms , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mammals
7.
Sci China Life Sci ; 66(1): 110-126, 2023 01.
Article in English | MEDLINE | ID: mdl-35943690

ABSTRACT

Bubonic plague caused by Yersinia pestis is highly infectious and often fatal. Characterization of the host immune response and its subsequent suppression by Y. pestis is critical to understanding the pathogenesis of Y. pestis. Here, we utilized single-cell RNA sequencing to systematically profile the transcriptomes of immune cells in draining lymph nodes (dLNs) during the early stage of Y. pestis infection. Dendritic cells responded to Y. pestis within 2 h post-infection (hpi), followed by the activation of macrophages/monocytes (Mφs/Mons) and recruitment of polymorphonuclear neutrophils (PMNs) to dLNs at 24 hpi. Analysis of cell-to-cell communication suggests that PMNs may be recruited to lymph nodes following the secretion of CCL9 by Mφs/Mons stimulated through CCR1-CCL9 interaction. Significant functional suppression of all the three innate immune cell types occurred during the early stage of infection. In summary, we present a dynamic immune landscape, at single-cell resolution, of murine dLNs involved in the response to Y. pestis infection, which may facilitate the understanding of the plague pathogenesis of during the early stage of infection.


Subject(s)
Plague , Yersinia pestis , Mice , Animals , Humans , Plague/pathology , Transcriptome , Yersinia pestis/genetics , Neutrophils , Lymph Nodes
8.
Nat Commun ; 13(1): 4526, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927280

ABSTRACT

Plague has caused three worldwide pandemics in history, including the Black Death in medieval ages. Yersinia pestis, the etiological agent of plague, has evolved a powerful arsenal to disrupt host immune defenses during evolution from enteropathogenic Y. pseudotuberculosis. Here, we find that two functionally redundant E3 ligase of Y. pestis, YspE1 and YspE2, can be delivered via type III secretion injectisome into host cytosol where they ubiquitinate multiple guanylate-binding proteins (GBPs) for proteasomal degradation. However, Y. pseudotuberculosis has no such capability due to lacking functional YspE1/2 homologs. YspE1/2-mediated GBP degradations significantly promote the survival of Y. pestis in macrophages and strongly inhibit inflammasome activation. By contrast, Gbpchr3-/-, chr5-/- macrophages exhibit much lowered inflammasome activation independent of YspE1/2, accompanied with an enhanced replication of Y. pestis. Accordingly, Gbpchr3-/-, chr5-/- mice are more susceptible to Y. pestis. We demonstrate that Y. pestis utilizes E3 ligases to subvert GBP-mediated host defense, which appears to be newly acquired by Y. pestis during evolution.


Subject(s)
Plague , Yersinia pestis , Yersinia pseudotuberculosis Infections , Yersinia pseudotuberculosis , Animals , Inflammasomes/metabolism , Mice , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Yersinia pestis/genetics , Yersinia pestis/metabolism , Yersinia pseudotuberculosis/metabolism
9.
Microbiol Spectr ; 10(3): e0071822, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768946

ABSTRACT

Manipulating mitochondrial homeostasis is essential for host defense against infection and pathogen survival in cells. This study reports for the first time that Y. pestis infection caused mitochondria damage that subsequently leads to the activation of Pink1/Parkin-independent mitophagy in macrophage, and the effector YopH from the type III secretion system was required for these effects. The generation of mitochondrial reactive oxygen species (mROS) by damaged mitochondria enhances the antibacterial activity of macrophages against Y. pestis and promotes apoptosis of the infected cells. Therefore, Y. pestis-induced mitophagy was employed to eliminate dysfunctional mitochondria and relieve the mROS accumulation. This study reveals a novel role for YopH of Y. pestis in damaging host macrophage mitochondria during plague infection and underlines the vital role of mitophagy in maintaining mitochondrial homeostasis by clearing bacteria-damaged mitochondria. The results show that mitophagy or mitochondrial fission manipulation could be used as a new strategy to treat plague. IMPORTANCE Y. pestis, the pathogen of plague, also known as the "Black Death," has caused millions of deaths throughout history. This study reports that Y. pestis infection induces mitochondrial fragmentation and abnormal mROS accumulation, and releases mitochondrial contents into the cytoplasm in macrophages. mROS promotes the antibacterial activity of macrophages against Y. pestis and increases apoptosis of the infected cells. PINK-Parkin-independent mitophagy is activated to balance mitochondrial homeostasis and mROS-induced bactericidal activity in Y. pestis-infected macrophages. These findings deepen the understanding of Y. pestis pathogenesis on mitochondria damage to disturb the host cellular immune elimination. Manipulating mitophagic activity or mitochondrial fission may be a novel therapeutic approach to treat plague.


Subject(s)
Plague , Yersinia pestis , Anti-Bacterial Agents/pharmacology , Homeostasis , Humans , Mitochondria , Mitophagy , Plague/microbiology , Ubiquitin-Protein Ligases
11.
Acta Pharmacol Sin ; 43(2): 316-329, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33850278

ABSTRACT

Hepatic stellate cells (HSCs) play an important role in the initiation and development of liver fibrogenesis, and abnormal glucose metabolism is increasingly being considered a crucial factor controlling phenotypic transformation in HSCs. However, the role of the factors affecting glycolysis in HSCs in the experimental models of liver fibrosis has not been completely elucidated. In this study, we showed that glycolysis was significantly enhanced, while the expression of brain and muscle arnt-like protein-1 (Bmal1) was downregulated in fibrotic liver tissues of mice, primary HSCs, and transforming growth factor-ß1 (TGF-ß1)-induced LX2 cells. Overexpression of Bmal1 in TGF-ß1-induced LX2 cells blocked glycolysis and inhibited the proliferation and phenotypic transformation of activated HSCs. We further confirmed the protective effect of Bmal1 in liver fibrosis by overexpressing Bmal1 from hepatic adeno-associated virus 8 in mice. In addition, we also showed that the regulation of glycolysis by Bmal1 is mediated by the isocitrate dehydrogenase 1/α-ketoglutarate (IDH1/α-KG) pathway. Collectively, our results indicated that a novel Bmal1-IDH1/α-KG axis may be involved in regulating glycolysis of activated HSCs and might hence be used as a therapeutic target for alleviating liver fibrosis.


Subject(s)
ARNTL Transcription Factors/metabolism , Glycolysis , Hepatic Stellate Cells/metabolism , Isocitrate Dehydrogenase/metabolism , Liver Cirrhosis/metabolism , ARNTL Transcription Factors/physiology , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Flow Cytometry , Hepatic Stellate Cells/pathology , Liver Cirrhosis/physiopathology , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL
12.
Commun Biol ; 4(1): 1248, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728737

ABSTRACT

Plague caused by Yersinia pestis is one of the deadliest diseases. However, many molecular mechanisms of bacterial virulence remain unclear. This study engaged in the discovery of small open reading frame (sORF)-encoded peptides (SEPs) in Y. pestis. An integrated proteogenomic pipeline was established, and an atlas containing 76 SEPs was described. Bioinformatic analysis indicated that 20% of these SEPs were secreted or localized to the transmembrane and that 33% contained functional domains. Two SEPs, named SEPs-yp1 and -yp2 and encoded in noncoding regions, were selected by comparative peptidomics analysis under host-specific environments and high-salinity stress. They displayed important roles in the regulation of antiphagocytic capability in a thorough functional assay. Remarkable attenuation of virulence in mice was observed in the SEP-deleted mutants. Further global proteomic analysis indicated that SEPs-yp1 and -yp2 affected the bacterial metabolic pathways, and SEP-yp1 was associated with the bacterial virulence by modulating the expression of key virulence factors of the Yersinia type III secretion system. Our study provides a rich resource for research on Y. pestis and plague, and the findings on SEP-yp1 and SEP-yp2 shed light on the molecular mechanism of bacterial virulence.


Subject(s)
Bacterial Proteins/genetics , Open Reading Frames/genetics , Peptides/genetics , Virulence Factors/genetics , Yersinia pestis/genetics , Yersinia pestis/pathogenicity , Animals , Bacterial Proteins/metabolism , Mice , Peptides/metabolism , Proteogenomics
13.
Front Microbiol ; 12: 700016, 2021.
Article in English | MEDLINE | ID: mdl-34305865

ABSTRACT

The recent discovery of collateral cleavage activity of class-II clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas) makes CRISPR-based diagnosis a potential high-accuracy nucleic acid detection method. Colloidal gold-based lateral flow immunochromatographic assay (LFA), which has been combined with CRISPR/Cas-based nucleic detection, usually associates with drawbacks of relative high background and the subjectivity in naked-eye read-out of the results. Here, we developed a novel system composed of Cas12a-based nucleic acid detection and up-converting phosphor technology (UPT)-based LFA (UPT-LFA), termed Cas12a-UPTLFA. We further demonstrated the utility of this platform in highly sensitive and specific detection of Yersinia pestis, the causative agent of the deadly plague. Due to high infectivity and mortality, as well as the potential to be misused as bioterrorism agent, a culture-free, ultrasensitive, specific, and rapid detection method for Y. pestis has long been desired. By incorporating isothermal recombinase polymerase amplification, the Cas12a-UPTLFA we established can successfully detect genomic DNA of Y. pestis as low as 3 attomolar (aM) and exhibited high sensitivity (93.75%) and specificity (90.63%) for detection of spiked blood samples with a detection limit of 102 colony-forming unit per 100 µl of mouse blood. With a portable biosensor, Cas12a-UPTLFA assay can be operated easily by non-professional personnel. Taken together, we have developed a novel Cas12a-UPTLFA platform for rapid detection of Y. pestis with high sensitivity and specificity, which is portable, not expensive, and easy to operate as a point-of-care method. This detection system can easily be extended to detect other pathogens and holds great promise for on-site detection of emerging infectious pathogens.

14.
Pathogens ; 10(5)2021 May 06.
Article in English | MEDLINE | ID: mdl-34066578

ABSTRACT

Three worldwide historical plague pandemics resulted in millions of deaths. Yersinia pestis, the etiologic agent of plague, is also a potential bioterrorist weapon. Simple, rapid, and specific detection of Y. pestis is important to prevent and control plague. However, the high similarity between Y. pestis and its sister species within the same genus makes detection work problematic. Here, the genome sequence from the Y. pestis CO92 strain was electronically separated into millions of fragments. These fragments were analyzed and compared with the genome sequences of 539 Y. pestis strains and 572 strains of 20 species within the Yersinia genus. Altogether, 97 Y. pestis-specific tags containing two or more single nucleotide polymorphism sites were screened out. These 97 tags efficiently distinguished Y. pestis from all other closely related species. We chose four of these tags to design a Cas12a-based detection system. PCR-fluorescence methodology was used to test the specificity of these tags, and the results showed that the fluorescence intensity produced by Y. pestis was significantly higher than that of non-Y. pestis (p < 0.0001). We then employed recombinase polymerase amplification and lateral flow dipsticks to visualize the results. Our newly developed plasmid-independent, species-specific library of tags completely and effectively screened chromosomal sequences. The detection limit of our four-tag Cas12a system reached picogram levels.

15.
Mol Cell Proteomics ; 20: 100066, 2021.
Article in English | MEDLINE | ID: mdl-33631294

ABSTRACT

Plague is a zoonotic disease that primarily infects rodents via fleabite. Transmission from flea to host niches requires rapid adaption of Yersinia pestis to the outer environments to establish infection. Here, quantitative proteome and secretome analyses of Y. pestis grown under conditions mimicking the two typical niches, i.e., the mammalian host (Mh) and the flea vector (Fv), were performed to understand the adaption strategies of this deadly pathogen. A secretome of Y. pestis containing 308 proteins has been identified using TMT-labeling mass spectrometry analysis. Although some proteins are known to be secreted, such as the type III secretion substrates, PsaA and F1 antigen, most of them were found to be secretory proteins for the first time. Comparative proteomic analysis showed that membrane proteins, chaperonins and stress response proteins are significantly upregulated under the Mh condition, among which the previously uncharacterized proteins YP_3416∼YP_3418 are remarkable because they cannot only be secreted but also translocated into HeLa cells by Y. pestis. We further demonstrated that the purified YP_3416 and YP_3418 exhibited E3 ubiquitin ligase activity in in vitro ubiquitination assay and yp_3416∼3418 deletion mutant of Y. pestis showed significant virulence attenuation in mice. Taken together, our results represent the first Y. pestis secretome, which will promote the better understanding of Y. pestis pathogenesis, as well as the development of new strategies for treatment and prevention of plague.


Subject(s)
Bacterial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Yersinia pestis/metabolism , Yersinia pestis/pathogenicity , Animals , Bacterial Proteins/genetics , Female , HeLa Cells , Humans , Mice, Inbred BALB C , Mutation , Plague , Proteomics , Secretome , Ubiquitin-Protein Ligases/genetics , Virulence , Yersinia pestis/genetics
16.
Appl Environ Microbiol ; 85(12)2019 06 15.
Article in English | MEDLINE | ID: mdl-30979834

ABSTRACT

Many genes in the bacterial pathogen Yersinia pestis, the causative agent of three plague pandemics, remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been shown to be an effective tool for gene knockdown in model bacteria. In this system, a catalytically dead Cas9 (dCas9) and a small guide RNA (sgRNA) form a complex, binding to the specific DNA target through base pairing, thereby impeding RNA polymerase binding and causing target gene repression. Here, we introduce an optimized CRISPRi system using Streptococcus pyogenes Cas9-derived dCas9 for gene knockdown in Y. pestis Multiple genes harbored on either the chromosome or plasmids of Y. pestis were efficiently knocked down (up to 380-fold) in a strictly anhydrotetracycline-inducible manner using this CRISPRi approach. Knockdown of hmsH (responsible for biofilm formation) or cspB (encoding a cold shock protein) resulted in greatly decreased biofilm formation or impaired cold tolerance in in vitro phenotypic assays. Furthermore, silencing of the virulence-associated genes yscB or ail using this CRISPRi system resulted in attenuation of virulence in HeLa cells and mice similar to that previously reported for yscB and ail null mutants. Taken together, our results confirm that this optimized CRISPRi system can reversibly and efficiently repress the expression of target genes in Y. pestis, providing an alternative to conventional gene knockdown techniques, as well as a strategy for high-throughput phenotypic screening of Y. pestis genes with unknown functions.IMPORTANCEYersiniapestis is a lethal pathogen responsible for millions of human deaths in history. It has also attracted much attention for potential uses as a bioweapon or bioterrorism agent, against which new vaccines are desperately needed. However, many Y. pestis genes remain uncharacterized, greatly hampering the development of measures for plague prevention and control. Clustered regularly interspaced short palindromic repeat interference (CRISPRi) has been successfully used in a variety of bacteria in functional genomic studies, but no such genetic tool has been reported in Y. pestis Here, we systematically optimized the CRISPRi approach for use in Y. pestis, which ultimately repressed target gene expression with high efficiency in a reversible manner. Knockdown of functional genes using this method produced phenotypes that were readily detected by in vitro assays, cell infection assays, and mouse infection experiments. This is a report of a CRISPRi approach in Y. pestis and highlights the potential use of this approach in high-throughput functional genomics studies of this pathogen.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression , Gene Knockdown Techniques/methods , Yersinia pestis/genetics , Streptococcus pyogenes
17.
J Cell Physiol ; 234(5): 5507-5518, 2019 05.
Article in English | MEDLINE | ID: mdl-30317575

ABSTRACT

The tumor suppressor protein p53 is a central governor of various cellular signals. It is well accepted that ubiquitination as well as ubiquitin-like (UBL) modifications of p53 protein is critical in the control of its activity. Interferon-stimulated gene 15 (ISG15) is a well-known UBL protein with pleiotropic functions, serving both as a free intracellular molecule and as a modifier by conjugating to target proteins. Initially, attentions have historically focused on the antiviral effects of ISG15 pathway. Remarkably, a significant role in the processes of autophagy, DNA repair, and protein translation provided considerable insight into the new functions of ISG15 pathway. Despite the deterministic revelation of the relation between ISG15 and p53, the functional consequence of p53 ISGylation appears somewhat confused. More important, more recent studies have hinted p53 ubiquitination or other UBL modifications that might interconnect with its ISGylation. Here, we aim to summarize the current knowledge of p53 ISGylation and the differences in other significant modifications, which would be beneficial for the development of p53-based cancer therapy.


Subject(s)
Cytokines/metabolism , Neoplasms/metabolism , Tumor Suppressor Protein p53/metabolism , Ubiquitination , Ubiquitins/metabolism , Animals , Antineoplastic Agents/therapeutic use , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Protein Stability , Proteolysis , Sumoylation , Tumor Suppressor Protein p53/genetics , Ubiquitination/drug effects
18.
Infect Immun ; 86(6)2018 06.
Article in English | MEDLINE | ID: mdl-29610260

ABSTRACT

Recent studies revealed that acetylation is a widely used protein modification in prokaryotic organisms. The major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB have been found to be involved in basic physiological processes, such as primary metabolism, chemotaxis, and stress responses, in Escherichia coli and Salmonella However, little is known about protein acetylation modifications in Yersinia pestis, a lethal pathogen responsible for millions of human deaths in three worldwide pandemics. Here we found that Yp_0659 and Yp_1760 of Y. pestis encode the major protein acetylation acetyltransferase YfiQ and the sirtuin-like deacetylase CobB, respectively, which can acetylate and deacetylate PhoP enzymatically in vitro Protein acetylation impairment in cobB and yfiQ mutants greatly decreased bacterial tolerance to cold, hot, high-salt, and acidic environments. Our comparative transcriptomic data revealed that the strongly decreased tolerance to stress stimuli was probably related to downregulation of the genes encoding the heat shock proteins (HtpG, HslV, HslR, and IbpA), cold shock proteins (CspC and CspA1), and acid resistance proteins (HdeB and AdiA). We found that the reversible acetylation mediated by CobB and YfiQ conferred attenuation of virulence, probably partially due to the decreased expression of the psaABCDEF operon, which encodes Psa fimbriae that play a key role in virulence of Y. pestis This is the first report, to our knowledge, on the roles of protein acetylation modification in stress responses, biofilm formation, and virulence of Y. pestis.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Sirtuins/metabolism , Yersinia pestis/metabolism , Acetyltransferases , Bacterial Proteins/genetics , Biofilms/growth & development , Gene Deletion , HeLa Cells , Humans , Hydrogen-Ion Concentration , Sirtuins/genetics , Sodium Chloride , Stress, Physiological , Temperature , Virulence , Yersinia pestis/genetics , Yersinia pestis/physiology
19.
Infect Immun ; 85(8)2017 08.
Article in English | MEDLINE | ID: mdl-28533472

ABSTRACT

Pathogenic yersiniae harbor a type III secretion system (T3SS) that injects Yersinia outer protein (Yop) into host cells. YopK has been shown to control Yop translocation and prevent inflammasome recognition of the T3SS by the innate immune system. Here, we demonstrate that YopK inhibits bacterial adherence to host cells by binding to the extracellular matrix adaptor protein matrilin-2 (MATN2). YopK binds to MATN2, and deleting amino acids 91 to 124 disrupts binding of YopK to MATN2. A yopK null mutant exhibits a hyperadhesive phenotype, which could be responsible for the established Yop hypertranslocation phenotype of yopK mutants. Expression of YopK, but not YopKΔ91-124, in a yopK mutant restored the wild-type phenotypes of adhesion and Yop translocation, suggesting that binding to MATN2 might be essential for YopK to inhibit bacterial adhesion and negatively regulate Yop translocation. A green fluorescent protein (GFP)-YopK fusion specifically binds to the endogenous MATN2 on the surface of HeLa cells, whereas GFP-YopKΔ91-124 cannot. Addition of purified YopK protein during infection decreased adhesion of Y. pestis to HeLa cells, while YopKΔ91-124 protein showed no effect. Taking these results together, we propose a model that the T3SS-secreted YopK hinders bacterial adhesion to HeLa cells by binding to MATN2, which is ubiquitously exposed on eukaryotic cells.


Subject(s)
Bacterial Adhesion , Bacterial Outer Membrane Proteins/metabolism , Yersinia pestis/metabolism , Animals , Bacterial Outer Membrane Proteins/genetics , Bacterial Translocation , HeLa Cells , Humans , Matrilin Proteins/metabolism , Mice , Mutation , Phagocytosis , Phenotype , Type III Secretion Systems/metabolism , Yersinia pestis/chemistry , Yersinia pestis/genetics , Yersinia pestis/pathogenicity
20.
J Biol Chem ; 292(13): 5488-5498, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28196868

ABSTRACT

The type III secretion system is a highly conserved virulence mechanism that is widely distributed in Gram-negative bacteria. It has a syringe-like structure composed of a multi-ring basal body that spans the bacterial envelope and a projecting needle that delivers virulence effectors into host cells. Here, we showed that the Yersinia inner rod protein YscI directly interacts with the needle protein YscF inside the bacterial cells and that this interaction depends on amino acid residues 83-102 in the carboxyl terminus of YscI. Alanine substitution of Trp-85 or Ser-86 abrogated the binding of YscI to YscF as well as needle assembly and the secretion of effectors (Yops) and the needle tip protein LcrV. However, yscI null mutants that were trans-complemented with YscI mutants that bind YscF still assembled the needle and secreted Yops, demonstrating that a direct interaction between YscF and YscI is critical for these processes. Consistently, YscI mutants that did not bind YscF resulted in greatly decreased HeLa cell cytotoxicity. Together, these results show that YscI participates in needle assembly by directly interacting with YscF.


Subject(s)
Bacterial Proteins/metabolism , Type III Secretion Systems/biosynthesis , Yersinia pestis/chemistry , Binding Sites/genetics , Cell Death , HeLa Cells , Humans , Mutagenesis, Site-Directed , Protein Binding , Type III Secretion Systems/chemistry , Type III Secretion Systems/toxicity , Yersinia pestis/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL