Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
J Environ Manage ; 370: 122410, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244926

ABSTRACT

Organic pollutants can alter the physicochemical properties and microbial communities of water bodies. In water contaminated with organic pollutants, the unique extracellular electron transfer mechanisms that promote sulfamethoxazole (SMX) degradation in tri-electrode microbial electrochemical systems (TE-MES) may be impacted. To simulate biodegradable organic matter contamination, glucose (GLU) was added. Metagenomics and metabolomics were used to analyze changes in microbial community structure, metabolism, and function on the electrodes. GLU addition accelerated water quality deterioration, and enhanced SMX degradation. Microbial taxa on the electrodes experienced selective enrichment. Notably, methanogens and SMX-degrading bacteria were enriched, while denitrifying bacteria and antibiotic-resistant bacteria were suppressed. Enriched metabolites were linked to 15 metabolic pathways and other functions like microbial signaling and genetics. Non-redundant genes also clustered in metabolic pathways, aligning with metabolite enrichment results. Additional pathways involved life cycle processes and protein interactions. Enzymes related to carbon metabolism, particularly glycoside hydrolases, increased significantly, indicating a shift in carbon metabolism on microbial electrodes after GLU addition. The abundance of intracellular electron transfer enzymes rose, while outer membrane proteins decreased. This contrasts with the typical TE-MES mechanism where outer membrane proteins facilitate SMX degradation. The presence of organic pollution may shift SMX degradation from an extracellular electrochemical process to an intracellular metabolic process, possibly involving co-metabolism with simple organic compounds. This study provides mechanistic insights and theoretical guidance for using TE-MES with embedded microbial electrodes to treat antibiotic-contaminated water affected by organic pollution.

2.
Clin Exp Ophthalmol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39089870

ABSTRACT

BACKGROUND: Accurate prognostic factors for primary ocular adnexal lymphoma (POAL) are scarce. Survival models and prognostic factors derived without considering competing risk factors suffer from major statistical errors. This study aimed to accurately assess prognostic factors in POAL patients using competing risk models, and compare this to the traditional COX proportional hazards model. METHODS: This retrospective study utilised data from the Surveillance, Epidemiology, and End Results (SEER) program 2010-2015 and included patients with B-cell POAL. The cumulative incidence function and Gray's test for cause-specific survival were calculated as univariate analysis. The competing risk models were a Fine-Gray subdistribution hazard model and a cause-specific model, and a traditional COX model was employed as a multivariate analysis. RESULTS: This study enrolled 846 eligible patients with POAL: 60 patients (7.09%) died from POAL and 123 patients (14.54%) died from other causes. Multivariate competing risk models indicated that age, laterality, histology subtype, the 7th edition of American Joint Committee on Cancer stage T, and radiotherapy were independent predictors for cause-specific survival of patients with POAL. There was high consistency between the two competing risk models. The COX model made several misestimations on the statistical significance and hazard ratios of prognostic factors. CONCLUSIONS: This study established competing risk models as a method to assess POAL prognostic factors, which was more accurate than traditional methods that do not consider competing risk elements.

3.
Bioresour Technol ; 406: 131057, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945502

ABSTRACT

The quinoid component of humic acids (HAs) had been studied as exogenous electron mediators (EMs), but the redox-mediating abilities of other functional groups remained unclear. This study evaluated the effects of various HAs functional groups on cellular respiration and extracellular electron transfer. The three EMs increased the current density compared to the control. Current density increased significantly after adding ultraviolet-irradiated HAs (UV-HAs), suggesting that nitrogenous group-mediated redox reactions contributed to high-density current generation. Structural equation model (SEM) results indicated that the contribution of nitrogen-containing groups to electron transfer could exceed 20%. This study proposed a synergistic mechanism: in the soil microbial fuel cells (soil-MFCs), HAs accelerated their component evolution through irreversible redox reactions and promoted extracellular electron transfer. Additionally, HAs-induced high expression of c-Cyts could further enhance high-density current generation. This study demonstrates that humic acids enhance electron transfer and current in bioelectrochemical systems, aiding sustainable energy optimization.


Subject(s)
Bioelectric Energy Sources , Humic Substances , Soil , Soil/chemistry , Electron Transport , Oxidation-Reduction , Soil Microbiology , Electricity
4.
World J Otorhinolaryngol Head Neck Surg ; 10(2): 113-120, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38855290

ABSTRACT

Objective: This cross-sectional study aimed to determine the epidemiology of olfactory and gustatory dysfunctions related to COVID-19 in China. Methods: This study was conducted by 45 tertiary Grade-A hospitals in China. Online and offline questionnaire data were obtained from patients infected with COVID-19 between December 28, 2022, and February 21, 2023. The collected information included basic demographics, medical history, smoking and drinking history, vaccination history, changes in olfactory and gustatory functions before and after infection, and other postinfection symptoms, as well as the duration and improvement status of olfactory and gustatory disorders. Results: Complete questionnaires were obtained from 35,566 subjects. The overall incidence of olfactory and taste dysfunction was 67.75%. Being female or being a cigarette smoker increased the likelihood of developing olfactory and taste dysfunction. Having received four doses of the vaccine or having good oral health or being a alcohol drinker decreased the risk of such dysfunction. Before infection, the average olfactory and taste VAS scores were 8.41 and 8.51, respectively; after infection, they decreased to 3.69 and 4.29 and recovered to 5.83 and 6.55 by the time of the survey. The median duration of dysosmia and dysgeusia was 15 and 12 days, respectively, with 0.5% of patients having symptoms lasting for more than 28 days. The overall self-reported improvement rate was 59.16%. Recovery was higher in males, never smokers, those who received two or three vaccine doses, and those that had never experienced dental health issues, or chronic accompanying symptoms. Conclusions: The incidence of dysosmia and dysgeusia following infection with the SARS-CoV-2 virus is high in China. Incidence and prognosis are influenced by several factors, including sex, SARS-CoV-2 vaccination, history of head-facial trauma, nasal and oral health status, smoking and drinking history, and the persistence of accompanying symptoms.

5.
J Hazard Mater ; 475: 134908, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38889459

ABSTRACT

Previous research has established a MES embedding a microbial electrode to facilitate the degradation of antibiotics in water. We modified microbial electrodes in the MES with PEDOT and rGO to enhance electron utilization on electrodes and to further promote antibiotic degradation. Density functional theory calculations on the SMX molecule indicated that the C4-S8 and S8-N27 bonds are the most susceptible to electron attack. The introduction of various functional groups and multivalent elements enhanced the electrodes' capacitance and electron mediation capabilities. This led to enhance both electron utilization on the electrodes and the removal efficiency of SMX. After 120 h, the degradation efficiency of SMX by PEDOT and rGO-modified electrodes increased by 45.47 % and 25.19 %, respectively, compared to unmodified electrodes. The relative abundance of sulfate-reducing and denitrifying bacteria significantly increased in PEDOT and rGO-modified electrodes, while the abundance of nitrifying bacteria and potential antibiotic resistance gene host microbes significantly decreased. The impact of PEDOT modification positively influenced microbial Cellular Processes, including cell growth, death, and motility. This study provides insights into the mechanisms of direct electron involvement in antibiotic degradation steps in microbial electrochemistry, and provides a possible path for improved strategies in antibiotic degradation and sustainable environmental remediation.


Subject(s)
Anti-Bacterial Agents , Electrodes , Electrons , Polymers , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Bacteria/metabolism , Bacteria/genetics , Graphite/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electrochemical Techniques , Water Pollutants, Chemical/chemistry
6.
J Transl Med ; 22(1): 569, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877534

ABSTRACT

Cancer remains a leading cause of mortality and poses a substantial threat to public health. Studies have revealed that Long noncoding RNA DANCR is a cytoplasmic lncRNA whose aberrant expression plays a pivotal role in various cancer types. Within tumour biology, DANCR exerts regulatory control over crucial processes such as proliferation, invasion, metastasis, angiogenesis, inflammatory responses, cellular energy metabolism reprogramming, and apoptosis. By acting as a competitive endogenous RNA for miRNAs and by interacting with proteins and mRNAs at the molecular level, DANCR contributes significantly to cancer progression. Elevated DANCR levels have also been linked to heightened resistance to anticancer drugs. Moreover, the detection of circulating DANCR holds promise as a valuable biomarker for aiding in the clinical differentiation of different cancer types. This article offers a comprehensive review and elucidation of the primary functions and molecular mechanisms through which DANCR influences tumours.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Animals
7.
ACS Appl Mater Interfaces ; 16(19): 25013-25024, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709947

ABSTRACT

The magnetic alignment of molecules, which exploits the anisotropy of diamagnetic susceptibility, provides a clean and versatile approach to the structural manipulation of semiconducting polymers. Here, the magnetic-alignment dynamics of two molecular-weight (MW) batches of a diketopyrrolopyrrole (DPP)-based copolymer (PDVT-8) were investigated. Microstructural characterizations revealed that the magnetically aligned, high-MW (Mn = 53.7 kDa) PDVT-8 film exhibited a higher degree of backbone chain alignment and film crystallinity compared with the low-MW (Mn = 17.6 kDa) PDVT-8 film grown via the same magnetic alignment method. We found that as the MW increases, the degree of preaggregation of the polymer molecules in solution significantly increases and the aggregation mode changes from H-aggregation to J-aggregation through a cooperative assembly mechanism. These events improved the responsiveness of high-MW polymer molecules to magnetic fields. Field-effect transistors based on the magnetic aligned high-MW PDVT-8 films exhibited a 6.8-fold increase in hole mobility compared to the spin-coated films, along with a mobility anisotropy ratio of 12.6. This work establishes a significant correlation among chain aggregation behavior in solution, polymer film microstructures, magnetic responsiveness, and carrier transport performance in donor-acceptor polymer systems.

8.
Bioresour Technol ; 404: 130909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815696

ABSTRACT

To enhance the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in sediments and to elucidate the mechanisms by which microbial electrochemical action aids in the degradation of PAHs, humic acid was used as an electron mediator in the microbial electrochemical system in this study. The results revealed that the addition of humic acids led to increases in the removal efficiencies of naphthalene, phenanthrene, and pyrene by 45.91%, 97.83%, and 85.56%, respectively, in areas remote from the anode, when compared to the control group. The investigation into the microbial community structure and functional attributes showed that the presence of humic acid did not significantly modify the microbial community composition or its functional expression at the anode. However, an examination of humic acid transformations demonstrated that humic acid extended the electron transfer range in sediment via the redox reactions of quinone and semiquinone groups, thereby facilitating the PAHs degradation within the sediment.


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Humic Substances , Polycyclic Aromatic Hydrocarbons , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Electrons , Electrodes , Electrochemical Techniques/methods , Oxidation-Reduction
9.
J Hazard Mater ; 472: 134427, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38696957

ABSTRACT

Aldehyde and ketone oxocarboxylic acid photoproducts were semi-quantitated in the aqueous phase after subjecting Macondo (MC252) crude oil-seawater systems to simulated solar irradiation. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was applied after derivatizing the samples with 2,4-dinitrophenylhydrazine (DNPH). Oil-seawater was irradiated at 27.0 °C using a solar simulator for 1 to 18 h. Following irradiation, the aqueous phase was treated with DNPH to generate aldehyde-DNPH and ketone-DNPH derivatives. Solid-phase extraction enriched the samples before analyzing them using (-) ESI-MS/MS. Precursor and product ion spectra were used to select carboxylic acid-containing aldehydes and ketones and provide semi-quantitation using surrogate standards and an internal standard. Loss of m/z 44 (CO2) in the product ion spectra further confirmed the carboxylic acid character. Near-linear increases in photoproduct concentration in the aqueous phase were observed over the 18 h irradiation period. Among the aldehyde and ketone oxocarboxylic acid photoproducts studied, photoproduction rates ranged from 0.6 - 69 µmol/h·m2 of oil surface. Despite some fluctuations, a general trend of lower production rate with higher molecular weight was observed. These results demonstrate the near-linear dependence of photoproduction on irradiance and provide ranges of rates that can be applied to modeling aldehyde and ketone oxocarboxylic acid photoproduction in ocean spills. STATEMENT OF ENVIRONMENTAL IMPACT: Crude oil on seawater degrades when exposed to sunlight. Oxygenated molecules are produced, including carboxylic acid-containing aldehydes and ketones. The formation of these photoproducts from oil films behaves linearly with solar exposure time. These photoproducts are more soluble than the original oil molecules, allowing them to have increased bioavailability and potentially increased toxicity. The rate of formation of these species when oil is exposed to sunlight determines their environmental impact.

10.
J Environ Manage ; 357: 120767, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560953

ABSTRACT

The enhancing effects of anodes on the degradation of the organochlorine pesticide atrazine (ATR) in soil within microbial electrochemical systems (MES) have been extensively researched. However, the impact and underlying mechanisms of soil microbial electrochemical systems (MES) on ATR degradation, particularly under conditions involving the addition of humic acids (HAs), remain elusive. In this investigation, a soil MES supplemented with humic acids (HAs) was established to assess the promotional effects and mechanisms of HAs on ATR degradation, utilizing EEM-PARAFAC and SEM analyses. Results revealed that the maximum power density of the MES in soil increased by 150%, and the degradation efficiency of ATR improved by over 50% following the addition of HAs. Furthermore, HAs were found to facilitate efficient ATR degradation in the far-anode region by mediating extracellular electron transfer. The components identified as critical in promoting ATR degradation were Like-Protein and Like-Humic acid substances. Analysis of the microbial community structure indicated that the addition of HAs favored the evolution of the soil MES microbial community and the enrichment of electroactive microorganisms. In the ATR degradation process, the swift accumulation of Hydrocarbyl ATR (HYA) was identified as the primary cause for the rapid degradation of ATR in electron-rich conditions. Essentially, HA facilitates the reduction of ATR to HYA through mediated bonded electron transfer, thereby markedly enhancing the efficiency of ATR degradation.


Subject(s)
Atrazine , Herbicides , Soil Pollutants , Humic Substances/analysis , Soil/chemistry , Soil Microbiology , Herbicides/chemistry , Soil Pollutants/chemistry
11.
Environ Technol ; : 1-14, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488119

ABSTRACT

Anaerobic Membrane Bioreactors (AnMBR) offer numerous advantages in wastewater treatment, yet they are prone to membrane fouling after extended operation, impeding their long-term efficiency and stability. In this study, a coupled system was developed using modified conductive membranes as the filtration membrane for the AnMBR and as the anodic conductive membrane in the microbial electrochemical system, with a total volume of approximately 2.57 L. The research focused on understanding the membrane fouling characteristics of the AnMBR when treating wastewater containing sodium ion (Na+) and magnesium ion (Mg2+). When the system was treating wastewater containing Na+, organic pollutants such as proteins and polysaccharides were identified as the primary causes of membrane fouling. Three experimental groups generating different electric currents exhibited extended operational times compared to the open-circuit control group, with extensions of 30, 24, and 15 days, respectively. Conversely, when treating wastewater with Mg2+, organic-inorganic composite fouling, primarily driven by Mg2+ bridging, emerged as the key challenge, with the experimental groups showing operational extensions of 5, 8, and 23 days, respectively, in comparison to the control group. Analysis of proteins and polysaccharides indicated that electric current played a crucial role in reducing organic fouling in the sludge cake layer. When treating wastewater containing Na+, the effectiveness of membrane fouling control was directly proportional to the electric current, while when treating wastewater containing Mg2+, it was directly proportional to the voltage.

12.
Int J Biol Macromol ; 264(Pt 1): 130475, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428764

ABSTRACT

Deep eutectic solvents (DES) are promising green solvents for depolymerization and reconstruction of lignin. Revealing the transformations of lignin during DES treatment is beneficial for high potential lignin applications. In this study, bagasse lignin was treated with a binary DES and three ternary DESs, respectively. The results showed that net hydrogen bonding acidity(α-ß) value of DES was positively correlated to the increment of phenolic hydroxyl of lignin, and the ternary DES of choline chloride-formic acid-oxalic acid (ChCl-FA-OA) exhibited the best phenolation performances. The phenolic hydroxyl content of ChCl-FA-OA treated lignin was increased by 50.4 %, reaching 2.41 mmol/g under optimum conditions (120 °C, 4 h, ChCl-FA-OA = 1:2:1). Moreover, it was found that the cleavage of ß-O-4' aryl ether bond and ester bond were dominant reactions during the treatment, accompanied by condensation reactions. Additionally, the obtained lignin oil contained various syringyl and guaiacyl derived phenolic compounds. Especially, the content of acetovanillone in lignin oil reached 29.94 %, much higher than in previous studies. Finally, the degradation mechanism of lignin in ChCl-FA-OA system was proposed. The present work provided insights into the relationship between lignin phenolation and DES properties. The novel ChCl-FA-OA system can achieve efficient lignin depolymerization, and convert lignin biomass into value-added chemical products.


Subject(s)
Deep Eutectic Solvents , Lignin , Lignin/chemistry , Solvents/chemistry , Phenols , Choline/chemistry , Biomass , Oxalic Acid , Hydrolysis
13.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475827

ABSTRACT

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Subject(s)
Acyltransferases , Hyperalgesia , Ion Channels , Touch , Animals , Female , Male , Mice , Hyperalgesia/pathology , Ion Channels/metabolism , Kinesins/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Pain , Primates , Touch/physiology , Acyltransferases/metabolism
14.
J Matern Fetal Neonatal Med ; 37(1): 2324348, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38466173

ABSTRACT

OBJECTIVE: To evaluate the clinical value of ultrasound findings in the screening of fetal chromosomal abnormalities and the analysis of risk factors for chromosome microarray analysis (CMA) abnormalities. METHODS: We retrospectively analyzed the datasets of 15,899 pregnant women who underwent prenatal evaluations at Affiliated Maternity and Child Health Care Hospital of Nantong University between August 2018 and December 2022. Everyone underwent ultrasound screening, and those with abnormal findings underwent CMA to identify chromosomal abnormalities. RESULTS: The detection rates for isolated ultrasound anomalies and combined ultrasound and CMA anomalies were 11.81% (1877/15,899) and 2.40% (381/15,899), respectively. Among all ultrasound abnormalities, detection rates for isolated ultrasound soft marker anomalies, isolated structural abnormalities, and both ultrasound soft marker anomalies with structural abnormalities were 82.91% (1872/2258), 15.99% (361/2258), and 1.11% (25/2258), respectively. The detection rate of abnormal chromosomes in pregnant women with abnormal ultrasound results was 16.87% (381/2258). The detection rates were 13.33% in cases with two or more ultrasound soft markers anomalies, 47.37% for two or more structural anomalies, and 48.00% for concomitant ultrasound soft marker and structural anomalies. CONCLUSIONS: Enhanced detection rates of chromosomal anomalies in fetal malformations are achieved with specific ultrasound findings (NT thickening, cardiovascular abnormalities, and multiple soft markers) or when combined with high-risk factors (advanced maternal age, familial history, parental chromosomal anomalies, etc.). When the maternal age is over 35 and with ≥2 ultrasound soft marker anomalies accompanied with any high-risk factors, CMA testing can aid in the diagnosis of prenatal chromosomal abnormalities.


Subject(s)
Chromosome Aberrations , Prenatal Diagnosis , Pregnancy , Child , Female , Humans , Retrospective Studies , Microarray Analysis , Vitamins , Chromosomes , Ultrasonography, Prenatal
15.
Am J Med Genet A ; 194(7): e63598, 2024 07.
Article in English | MEDLINE | ID: mdl-38501757

ABSTRACT

Primary microcephaly is characterized by a head circumference prenatally or at birth that falls below three standard deviations from age-, ethnic-, and sex-specific norms. Genetic defects are one of the underlying causes of primary microcephaly. Since 2014, five variants of the SASS6 gene have been identified as the cause of MCPH 14 in three reported families. In this study, we present the genetic findings of members of a nonconsanguineous Chinese couple with a history of microcephaly and fetal growth restriction (FGR) during their first pregnancy. Utilizing trio whole-exome sequencing, we identified compound heterozygous variants involving a frameshift NM_194292.3:c.450_453del p.(Lys150AsnfsTer7) variant and a splice region NM_194292.3:c.1674+3A>G variant within the SASS6 gene in the affected fetus. Moreover, reverse transcriptase-polymerase chain reaction from RNA of the mother's peripheral blood leukocytes revealed that the c.1674+3A>G variant led to the skipping of exon 14 and an inframe deletion. To the best of our knowledge, the association between FGR and SASS6-related microcephaly has not been reported, and our findings confirm the pivotal role of SASS6 in microcephaly pathogenesis and reveal an expanded view of the phenotype and mutation spectrum associated with this gene.


Subject(s)
Alleles , Exome Sequencing , Fetal Growth Retardation , Microcephaly , Humans , Microcephaly/genetics , Microcephaly/pathology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/pathology , Female , Male , Pregnancy , Pedigree , Mutation/genetics , Adult , Genetic Predisposition to Disease , Phenotype
16.
J Robot Surg ; 18(1): 88, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386236

ABSTRACT

Transoral vestibular robotic thyroidectomy can really make the patient's body surface free of scar. This study aimed to compare the surgical and patient-related outcomes between the transoral vestibular robotic thyroidectomy and traditional low-collar incision thyroidectomy. The clinical data of 120 patients underwent transoral vestibular robotic thyroidectomy (TOVRT) or traditional low-collar incision thyroidectomy (TLCIT) were collected from May 2020 to October 2021. Propensity score matching analysis was used to minimize selection bias. All these patients were diagnosed with papillary thyroid carcinoma (PTC) through ultrasound-guided fine-needle aspiration prior to surgical intervention and surgical plan was tailored for each patient. An intraoperative recurrent laryngeal nerve (RLN) detection system was used in all patients, whose RLNs were identified and protected. We performed transoral vestibular robotic thyroidectomy with three intraoral incisions. Additional right axillary fold incisions were adopted occasionally to enhance fine reverse traction of tissue for radical tumor dissection. Clinical data including gender, age, tumor size, BMI, operation time, postoperative drainage volume and time, pain score, postoperative length of stay (LOS),number of lymph nodes removed, complications, and medical expense were observed and analyzed. Propensity score matching was used for 1:1 matching between the TOVRT group and the TLCIT group. All these patients accepted total thyroidectomy(or lobectomy) plus central lymph node dissection and all suffered from PTC confirmed by postoperative pathology. No conversion to open surgery happened in TOVRT group. The operative time of TOVRT group was longer than that of TLCIT group (P < 0.05). The postoperative drainage volume of TOVRT group was more than that of TLCIT group (P < 0.05). The drainage tube placement time of TOVRT group were longer than that of TLCIT group (P < 0.05). Significant differences were also found in intraoperative bleeding volume, pain score and medical expense between the two groups (P < 0.05). The incidence of perioperative common complications such as hypoparathyroidism and vocal cord paralysis in the two groups was almost identical (P > 0.05). However, there were some specific complications such as surgical area infection (one case), skin burn (one case), oral tear (two cases), and paresthesia of the lower lip and the chin (two cases) were found in TOVRT group. Obviously, the postoperative cosmetic effect of the TOVRT group was better than TLCIT group (P < 0.05). TOVRT is safe and feasible for low to moderate-risk PTC patients and is a potential alternative for patients who require no scar on their neck. Patients accepted TOVRT can get more satisfaction and have less psychologic injury caused by surgery.


Subject(s)
Neoplasms , Robotic Surgical Procedures , Humans , Thyroidectomy/adverse effects , Robotic Surgical Procedures/methods , Drainage , Cicatrix , Pain
17.
ChemSusChem ; 17(3): e202301035, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-37724860

ABSTRACT

High-density polyethylene (HDPE) and isotactic polypropylene (iPP) are widely used in industrial and residential applications due to their low cost and chemical stability, thus their recycling process can contribute to a circular economy. However, both polymers are non-polar materials, and the incompatibility with most other materials leads to substantially inferior properties of blends. In this work, we propose a flexible compatibilization strategy to improve the compatibility of HDPE/iPP blends. Ozone is adopted to induce reactive extrusion for rapid oxidation of HDPE and chain-branching reactions for both HDPE and HDPE/iPP blends. During extrusion process, ozone oxidizes HDPE effectively in a short time and introduces oxygen-containing groups such as carbonyl and ester groups, which improves the hydrophilicity. The addition of trimethylolpropane triacrylate (TMPTA) could promote branching reaction and facilitate the formation of HDPE-g-iPP copolymers, which improved the compatibility for HDPE/iPP. As a result, the impact strength of ozone-modified HDPE and HDPE/iPP blends increased by 22 % and 82 %, respectively, and the tensile strength also increased. This strategy would have potential applications in the field of sorting-free and solvent-free recycling of waste polyolefin plastics.

18.
Cell Mol Biol (Noisy-le-grand) ; 69(13): 59-65, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38158688

ABSTRACT

In this study, we observed the value of ADRB2 and FCER1B gene polymorphisms in evaluating congenital respiratory diseases in preterm infants (PTIs), analyzed their effects on airway smooth muscle cells (ASMCs), and preliminarily discussed the underlying mechanism. First, we placed 64 healthy PTIs (control group) and 45 PTIs with congenital respiratory diseases (research group) born at our hospital from April 2021 to June 2023 were selected as the research subjects. Through testing, we found that the carriers of AA genotype of the polymorphic marker rs1042713 of the ADRB2 gene and that of the rs569108 locus of the FCER1B gene were less in the research group compared with the control group (P<0.05). Preterm infants carrying the GG genotype had a 2.887-fold (P<0.05) increased risk of developing congenital respiratory disease under the recessive model at the rs1042713 locus of the ADRB2 gene. Under the dominant model, preterm infants who did not carry the AA genotype had a 3.070-fold (P<0.05) increased risk of developing congenital respiratory disease. Subsequently, the constructed abnormal expression vectors of ADRB2 and FCER1B were transfected into ASMCs to examine changes in cell activity and pyroptosis. We found that up-regulating ADRB2 and FCERIB expression promoted ASMC proliferation and inflammatory reactions, inhibited apoptosis, and accelerated pyroptosis (P<0.05); silencing their expression, however, led to the opposite effect. In conclusion, the ADRB2 and FCERIB gene polymorphisms are strongly correlated with congenital respiratory diseases, which can provide a reference for clinical evaluation of congenital respiratory diseases in PTIs.


Subject(s)
Genetic Predisposition to Disease , Receptors, Adrenergic, beta-2 , Receptors, IgE , Respiratory Tract Diseases , Humans , Infant, Newborn , Genotype , Infant, Premature , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta-2/genetics , Receptors, IgE/genetics
19.
World J Oncol ; 14(6): 476-487, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38022397

ABSTRACT

Background: Postoperative distant metastasis is the main cause of death in breast cancer patients. We aimed to construct a nomogram to predict the risk of metastasis of luminal B type invasive ductal carcinoma. Methods: We applied the data of 364 luminal B type breast cancer patients between 2008 and 2013. Patients were categorized into modeling group and validation group randomly (1:1). The breast cancer metastasis nomogram was developed from the logistic regression model using clinicopathological variables. The area under the receiver-operating characteristic curve (AUC) was calculated in modeling group and validation group to evaluate the predictive accuracy of the nomogram. Results: The multivariate logistic regression analysis showed that tumor size, No. of the positive level 1 axillary lymph nodes, human epidermal growth factor receptor 2 (HER2) status and Ki67 index were the independent predictors of the breast cancer metastasis. The AUC values of the modeling group and the validation group were 0.855 and 0.818, respectively. The nomogram had a well-fitted calibration curve. The positive and negative predictive values were 49.3% and 92.7% in the modeling group, and 47.9% and 91.0% in the validation group. Patients who had a score of 60 or more were thought to have a high risk of breast cancer metastasis. Conclusions: The nomogram has a great predictive accuracy of predicting the risk of breast cancer metastasis. If patients had a score of 60 or more, necessary measures, like more standard treatment methods and higher treatment adherence of patients, are needed to take to lower the risk of metastasis and improve the prognosis.

20.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(9): 1176-1180, 2023 Sep 10.
Article in Chinese | MEDLINE | ID: mdl-37643969

ABSTRACT

OBJECTIVE: To investigate the genetic characteristics and cause of death for an infant with alveolar capillary dysplasia and pulmonary vein misalignment (ACD/MPV). METHODS: An infant with ACD/MPV diagnosed at the Affiliated Maternity and Child Health Care Hospital of Nantong University in September 2022 was selected as the study subject. Clinical data of the infant were collected. Whole exome sequencing (WES) was carried out to detect genetic variants in the skin tissue, and Sanger sequencing was performed for verifying the candidate variants in the parents. Droplet digital PCR (ddPCR) was used to determine the mosaicism ratio of the variant in different germ layer-derived samples from the father. RESULTS: The infant had died within 2 days after birth due to hypoxemia and respiratory distress. WES revealed that she has harbored a c.433C>T nonsense variant in exon 1 of the FOXF1 gene, which was unreported previously. Sanger sequencing has verified the variant in the infant, with her mother's locus being the wild-type and a minor variant peak noted in her father. ddPCR indicated that the mosaic ratio of the c.433C>T variant in the father's sperm was 27.18%, with the mosaic ratios of the variant in tissues originating from the three germ layers ranging from 11% to 28%. CONCLUSION: The c.433C>T variant derived from the paternal germline and somatic mosaicism of the FOXF1 gene had probably predisposed to the neonatal death of this infant. ddPCR is an effective method for detecting mosaic variants.


Subject(s)
Infant Death , Semen , Female , Humans , Pregnancy , Child , Infant , Infant, Newborn , Male , Exons , Mosaicism , Forkhead Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL