Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Proc Natl Acad Sci U S A ; 121(27): e2406884121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38935562

ABSTRACT

Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau. This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments, possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding light on device parameters for future applications.

2.
EMBO J ; 43(9): 1722-1739, 2024 May.
Article in English | MEDLINE | ID: mdl-38580775

ABSTRACT

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Subject(s)
Hematopoietic Stem Cells , Megakaryocytes , Animals , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Hematopoiesis/physiology , Mesonephros/embryology , Mesonephros/metabolism , Mesonephros/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Coculture Techniques
3.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490977

ABSTRACT

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Subject(s)
Hemangioblasts , Hematopoietic Stem Cells , Animals , Mice , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Embryo, Mammalian , Hematopoiesis/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mesonephros
4.
BMC Cancer ; 24(1): 35, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178062

ABSTRACT

OBJECTIVE: To evaluate whether quantification of lung GGN shape is useful in predicting pathological categorization of lung adenocarcinoma and guiding the clinic. METHODS: 98 patients with primary lung adenocarcinoma were pathologically confirmed and CT was performed preoperatively, and all lesions were pathologically ≤ 30 mm in size. On CT images, we measured the maximum area of the lesion's cross-section (MA). The longest diameter of the tumor (LD) was marked with points A and B, and the perpendicular diameter (PD) was marked with points C and D, which was the longest diameter perpendicular to AB. and D, which was the longest diameter perpendicular to AB. We took angles A and B as big angle A (BiA) and small angle A (SmA). We measured the MA, LD, and PD, and for analysis we derived the LD/PD ratio and the BiA/SmA ratio. The data were analysed using the chi-square test, t-test, ROC analysis, and binary logistic regression analysis. RESULTS: Precursor glandular lesions (PGL) and microinvasive adenocarcinoma (MIA) were distinguished from invasive adenocarcinoma (IAC) by the BiA/SmA ratio and LD, two independent factors (p = 0.007, p = 0.018). Lung adenocarcinoma pathological categorization was indicated by the BiA/SmA ratio of 1.35 and the LD of 11.56 mm with sensitivity of 81.36% and 71.79%, respectively; specificity of 71.79% and 74.36%, respectively; and AUC of 0.8357 (95% CI: 0.7558-0.9157, p < 0.001), 0.8666 (95% CI: 0.7866-0.9465, p < 0.001), respectively. In predicting the pathological categorization of lung adenocarcinoma, the area under the ROC curve of the BiA/SmA ratio combined with LD was 0.9231 (95% CI: 0.8700-0.9762, p < 0.001), with a sensitivity of 81.36% and a specificity of 89.74%. CONCLUSIONS: Quantification of lung GGN morphology by the BiA/SmA ratio combined with LD could be helpful in predicting pathological classification of lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Neoplasm Invasiveness , Retrospective Studies , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology
5.
Org Lett ; 25(49): 8922-8926, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38057263

ABSTRACT

Oxidative amination for the installation of nitrogen functional molecules from nitrogen nucleophiles has always been a very challenging topic in organic synthesis. Here we report a novel conversion of different aldehydes with secondary amines for the synthesis of diversified α-amino ketones. This method can be achieved through oxidative rearrangement of an in situ-generated enamine intermediate promoted by commercially available sodium percarbonate. Furthermore, this one-pot process is also suitable for the functional modification of complex molecules.

6.
Gut Microbes ; 15(2): 2263934, 2023 12.
Article in English | MEDLINE | ID: mdl-37795995

ABSTRACT

As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRß repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRß clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Fusobacterium nucleatum , Biomarkers , Mutation , Receptors, Antigen, T-Cell/genetics
7.
Front Neurol ; 14: 1223457, 2023.
Article in English | MEDLINE | ID: mdl-37854064

ABSTRACT

Objective: Temporal lobe epilepsy (TLE) is the most common cause of drug-resistant epilepsy and can be treated surgically to control seizures. In this study, we analyzed the relevant research literature in the field of temporal lobe epilepsy (TLE) treatment to understand the background, hotspots, and trends in TLE treatment research. Methods: We discussed the trend, frontier, and hotspot of scientific output in TLE treatment research in the world in the last 20 years by searching the core collection of the Web of Science database. Excel and CiteSpace software were used to analyze the basic data of the literature. Result: We identified a total of 2,051 publications on TLE treatment from 75 countries between 2003 and 2023. We found that the publication rate was generally increasing. The United States was the most publishing country; among the research institutions on TLE treatment, the University of California system published the most relevant literature and collaborated the most with other institutions. The co-citation of literature, keyword co-occurrence, and its clustering analysis showed that the early studies focused on open surgical treatment, mainly by lobectomy. In recent years, the attention given to stereotactic, microsurgery, and other surgical techniques has gradually increased, and the burst analysis indicated that new research hotspots may appear in the future in the areas of improved surgical procedures and mechanism research.

8.
Front Endocrinol (Lausanne) ; 14: 1214404, 2023.
Article in English | MEDLINE | ID: mdl-37745715

ABSTRACT

Objective: The relevant literatures in the field of pulmonary neuroendocrine tumor were analyzed to understand the lineage, hot spots and development trends of research in this tumor. Method: The Web of Science core collection was searched for English-language literature about neuroendocrine tumors of the lung published between 2000 and 2022. CiteSpace software was imported for visualization analysis of countries, institutions, co-cited authors and co-cited journals and sorting of high-frequency keywords, as well as co-cited references and keyword co-occurrence, clustering and bursting display. Results: A total of 594 publications on neuroendocrine tumours of the lung were available, from 2000 to 2022, with an overall upward trend of annual publications in the literature. Authors or institutions from the United States, Italy, Japan and China were more active in this field, but there was little cooperation among the major countries. Co-cited references and keyword co-occurrence and cluster analysis showed that research on diagnostic instruments, pathogenesis, ectopic ACTH signs, staging and prognosis and treatment was a current research hotspot. The keyword bursts suggested that therapeutic approaches might be a key focus of future research into the field for pulmonary neuroendocrine tumors. Conclusion: Over these 20 years, research related to neuroendocrine tumors of the lung has increased in fervour, with research on diagnostic instruments, pathogenesis, ectopic ACTH signs, staging and prognosis, and treatment being the main focus of research. Therapeutic treatments may be the future research trend in this field.


Subject(s)
Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/therapy , Pattern Recognition, Automated , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Adrenocorticotropic Hormone , Lung
9.
CNS Neurosci Ther ; 29 Suppl 1: 84-97, 2023 06.
Article in English | MEDLINE | ID: mdl-36627748

ABSTRACT

In recent decades, various roles of the gut microbiota in physiological and pathological conditions have been uncovered. Among the many interacting pathways between the host and gut flora, the gut-brain axis has drawn increasing attention and is generally considered a promising way to understand and treat brain tumors, one of the most lethal neoplasms. In this narrative review, we aimed to unveil and dissect the sophisticated mechanisms by which the gut-brain axis exerts its influence on brain tumors. Furthermore, we summarized the latest research regarding the gastrointestinal microbial landscape and the effect of gut-brain axis malfunction on different brain tumors. Finally, we outlined the ongoing developing approaches of microbial manipulation and their corresponding research related to neuro-malignancies. Collectively, we recapitulated the advances in gut microbial alterations along with their potential interactive mechanisms in brain tumors and encouraged increased efforts in this area.


Subject(s)
Brain Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/physiology , Brain/metabolism , Brain-Gut Axis , Brain Neoplasms/metabolism
10.
Transl Psychiatry ; 13(1): 17, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36670104

ABSTRACT

Autism spectrum disorder (ASD) is a complex behavioral disorder diagnosed by social interaction difficulties, restricted verbal communication, and repetitive behaviors. Fecal microbiota transplantation (FMT) is a safe and efficient strategy to adjust gut microbiota dysbiosis and improve ASD-related behavioral symptoms, but its regulatory mechanism is unknown. The impact of the microbiota and its functions on ASD development is urgently being investigated to develop new therapeutic strategies for ASD. We reconstituted the gut microbiota of a valproic acid (VPA)-induced autism mouse model through FMT and found that ASD is in part driven by specific gut dysbiosis and metabolite changes that are involved in the signaling of serotonergic synapse and glutamatergic synapse pathways, which might be associated with behavioral changes. Further analysis of the microbiota showed a profound decrease in the genera Bacteroides and Odoribacter, both of which likely contributed to the regulation of serotonergic and glutamatergic synapse metabolism in mice. The engraftment of Turicibacter and Alistipes was also positively correlated with the improvement in behavior after FMT. Our results suggested that successful transfer of the gut microbiota from healthy donors to ASD mice was sufficient to improve ASD-related behaviors. Modulation of gut dysbiosis by FMT could be an effective approach to improve ASD-related behaviors in patients.


Subject(s)
Autism Spectrum Disorder , Mice , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/therapy , Autism Spectrum Disorder/metabolism , Fecal Microbiota Transplantation , Valproic Acid , Dysbiosis/chemically induced , Dysbiosis/therapy , Signal Transduction
11.
Phys Rev Lett ; 129(16): 167702, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36306766

ABSTRACT

Probing an isolated Majorana zero mode is predicted to reveal a tunneling conductance quantized at 2e^{2}/h at zero temperature. Experimentally, a zero-bias peak (ZBP) is expected and its height should remain robust against relevant parameter tuning, forming a quantized plateau. Here, we report the observation of large ZBPs in a thin InAs-Al hybrid nanowire device. The ZBP height can stick close to 2e^{2}/h, mostly within 5% tolerance, by sweeping gate voltages and magnetic field. We further map out the phase diagram and identify two plateau regions in the phase space. Despite the presence of disorder and quantum dots, our result constitutes a step forward toward establishing Majorana zero modes.

12.
Oncol Lett ; 23(4): 116, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35261630

ABSTRACT

The aim of the present study was to evaluate the antitumor effects of 2,2',4'-trihydroxychalcone (7a) on the A549 human lung cancer cell line. A549 cells were treated with different concentrations of 7a for different time periods. Cells without 7a were used as the negative control group. Cell proliferation, invasion, vasculogenic mimicry (VM) formation, heterogeneous adhesion and apoptosis were measured using Cell Counting Kit-8, Transwell invasion, VM, adhesion and flow cytometric assays, respectively. In addition, the expression of related proteins was determined using western blot analysis or ELISA. The present study found that 7a had a significant inhibitory effect on the survival rate of the A549 lung cancer cells but almost no effect on BEAS-2B human lung epithelial cells or human venous endothelial cells. The migration rate, VM length, invasion rate and heterogeneous adhesion number of cells treated with 7a significantly decreased as the concentration increased, while the apoptosis rate increased. Western blot analysis showed that 7a treatment significantly increased the expression levels of E-cadherin, cleaved poly (ADP-ribose) polymerase, Bax and caspase-3 and simultaneously decreased the expression levels of metalloproteinase-2/9, Bcl-2, phosphorylated (p)-PI3K, p-AKT, p-mTOR, vascular endothelial growth factor (VEGF), E-selectin and N-cadherin. At the same time, the ELISA results showed that the level of the pro-angiogenic factor VEGF in the culture media was reduced in the presence of 7a. In addition, 7a could also reduce the nuclear NF-κB protein expression, which could inhibit the gene transcription of tumor apoptosis and metastasis-related proteins. Therefore, 7a may exert inhibitory effects on A549 cells by inhibiting cell proliferation, migration, VM formation and heterogeneous adhesion, as well as by inducing apoptosis through the suppression of the PI3K/AKT/NF-κB signaling pathway; these findings suggested that 7a may be a promising agent for the treatment of lung cancer.

13.
Phys Rev Lett ; 128(7): 076802, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244417

ABSTRACT

The Majorana search is caught up in an extensive debate about the false-positive signals from nontopological Andreev bound states. We introduce a remedy using the dissipative probe to generate electron-boson interaction. We theoretically show that the interaction-induced renormalization leads to significantly distinct universal zero-bias conductance behaviors, i.e., distinct characteristic power law in temperature, for different types of Andreev reflections, that show a sharp contrast to that of a Majorana zero mode. Various specific cases have been studied, including the cases in which two charges involved in an Andreev reflection process maintain or lose coherence, and the cases for multiple Andreev bound states with or without a Majorana. A transparent list of conductance features in each case is provided to help distinguish the observed subgap states in experiments, which also promotes the identification of Majorana zero modes.

14.
Phys Rev Lett ; 128(7): 076803, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244449

ABSTRACT

Hybrid semiconductor-superconductor nanowires are predicted to host Majorana zero modes that induce zero-bias peaks (ZBPs) in tunneling conductance. ZBPs alone, however, are not sufficient evidence due to the ubiquitous presence of Andreev bound states. Here, we implement a strongly resistive normal lead in InAs-Al nanowire devices and show that most of the expected Andreev bound state-induced ZBPs can be suppressed, a phenomenon known as environmental Coulomb blockade. Our result is the first experimental demonstration of this dissipative interaction effect on Andreev bound states and can serve as a possible filter to narrow down the ZBP phase diagram in future Majorana searches.

15.
BMC Gastroenterol ; 22(1): 62, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35151255

ABSTRACT

BACKGROUND: The pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion has been used to improve the inflammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium. METHODS: Twenty-five male rats were randomly assigned into five groups. The UC rat model was established by administering DSS solution. The rats in the moxibustion and normal rats with moxibustion groups were treated with moxibustion at Tianshu (bilateral, ST25) points, and the mesalazine group rats were treated with mesalazine once daily for 7 consecutive days. Disease activity index (DAI) and haematoxylin and eosin staining were used to evaluate the effect of moxibustion. Gut microbiota profiling was conducted by metagenomic high throughput sequencing technology. The gut microbiota composition, diversity and function were analyzed and compared using metagenomics methodologies. RESULTS: The DAI scores and histopathology scores in the moxibustion and mesalazine groups were significantly decreased compared with the UC group (P < 0.01). Moxibustion treatment increased abundance levels of Bacteroidetes, Actinobacteria, Ascomycota, Synergistetes and decreased abundance of Firmicutes, Proteobacteria. At the genus level, the abundance of Bacteroides, Bacteroides_bacterium_M7, Prevotella, Bacteroidales_bacterium_H2, were increased and Bacteroides_bacterium_H3, Parabacteroides, Porphyromonas, Alistipes, Parasutterella were decreased in the UC group in comparsion with those in the NG group. Moxibustion increased the abundance of Bacteroides and Bacteroides_bacterium_H3 and decreased Bacteroides_bacterium_M7, Prevotella, Bacteroidales_bacterium_H2. In UC group, the specie Bacteroides_massiliensis was negatively (P < 0.05) correlated with IL-23, Bacteroides_eggerthii_CAG109 and Bacteroides_eggerthii were negatively (P < 0.05) correlated with TGF-ß. And the species Prevotella_sp_CAG1031 and Bacteroides_bacterium_H2 were significant positively (P < 0.05) correlated with IL-23. In addition, compare with the normal group, genes involved in certain metabolic pathways, such as energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, were under-represented in the UC group, and these changes in the metabolic pathways could be reversed by moxibustion treatment and mesalazine treatment. CONCLUSIONS: Our findings suggest that moxibustion treatment may protect the host from mucosal inflammation by modulating the intestinal microbiota community.


Subject(s)
Colitis, Ulcerative , Colitis , Gastrointestinal Microbiome , Moxibustion , Acupuncture Points , Animals , Colitis/chemically induced , Colitis/therapy , Colitis, Ulcerative/therapy , Dextran Sulfate , Disease Models, Animal , Male , Rats
16.
Microbiol Spectr ; 10(1): e0042521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019688

ABSTRACT

Prior study has demonstrated that gut microbiota at the genus level is significantly altered in patients with growth hormone (GH)-secreting pituitary adenoma (GHPA). Yet, no studies exist describing the state of gut microbiota at species level in GHPA. We performed a study using 16S rRNA amplicon sequencing in a cohort of patients with GH-secreting pituitary adenoma (GHPA, n = 28) and healthy controls (n = 67). Among them, 9 patients and 10 healthy controls were randomly chosen and enrolled in metagenomics shotgun sequencing, generating 280,426,512 reads after aligning to NCBI GenBank DataBase to acquire taxa information at the species level. Weighted UniFrac analysis revealed that microbial diversity was notably decreased in patients with GHPA, consistent with a previous study. With 16S rRNA sequencing, after correction for false-discovery rate (FDR), rank-sum test at the genus level revealed that the relative abundance of Oscillibacter and Enterobacter was remarkably increased in patients and Blautia and Romboutsia genera predominated in the controls, augmented by additional LEfSe (linear discriminant analysis effect size) analysis. As for further comparison at the species level with metagenomics sequencing, rank-sum test together with LEfSe analysis confirmed the enrichment of Alistipes shahii and Odoribacter splanchnicus in the patient group. Notably, LEfSe analysis with metagenomics also demonstrated that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND, derived from Enterobacter, were both significantly enriched in patients. Functional analysis showed that amino acid metabolism pathway was remarkably enriched in GHPA, while carbohydrate metabolism pathway was notably enriched in controls. Further, significant positive correlations were observed between Enterobacter and baseline insulin-like growth factor 1 (IGF-1), indicating that Enterobacter may be strongly associated with GH/IGF-1 axis in GHPA. Our data extend our insight into the GHPA microbiome, which may shed further light on GHPA pathogenesis and facilitate the exploration of novel therapeutic targets based on microbiota manipulation. IMPORTANCE Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extraintestinal diseases. Growth hormone-secreting pituitary adenoma (GHPA) is an insidious disease with persistent hypersecretion of GH and IGF-1, causing increased morbidity and mortality. Researches have reported that the GH/IGF-1 axis exerts its own influence on the intestinal microflora. Here, the results showed that compared with healthy controls, GHPA patients not only decreased the alpha diversity of the intestinal flora but also significantly changed their beta diversity. Further, metagenomics shotgun sequencing in the present study exhibited that Enterobacter sp. DC1 and Enterobacter sp. 940 PEND were enriched in patients. Also, we were pleasantly surprised to find that the Enterobacter genus was strongly positively correlated with baseline IGF-1 levels. Collectively, our work provides the first glimpse of the dysbiosis of the gut microbiota at species level, providing a better understanding of the pathophysiological process of GHPA.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Microbiome , Growth Hormone-Secreting Pituitary Adenoma/microbiology , Adult , Bacteria/classification , Bacteria/genetics , Case-Control Studies , DNA, Bacterial/genetics , Dysbiosis/microbiology , Feces/microbiology , Female , Growth Hormone/metabolism , Growth Hormone-Secreting Pituitary Adenoma/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Male , Metagenomics , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics
17.
Nat Aging ; 2(5): 438-452, 2022 05.
Article in English | MEDLINE | ID: mdl-37118062

ABSTRACT

A better understanding of the biological and environmental variables that contribute to exceptional longevity has the potential to inform the treatment of geriatric diseases and help achieve healthy aging. Here, we compared the gut microbiome and blood metabolome of extremely long-lived individuals (94-105 years old) to that of their children (50-79 years old) in 116 Han Chinese families. We found extensive metagenomic and metabolomic remodeling in advanced age and observed a generational divergence in the correlations with socioeconomic factors. An analysis of quantitative trait loci revealed that genetic associations with metagenomic and metabolomic features were largely generation-specific, but we also found 131 plasma metabolic quantitative trait loci associations that were cross-generational with the genetic variants concentrated in six loci. These included associations between FADS1/2 and arachidonate, PTPA and succinylcarnitine and FLVCR1 and choline. Our characterization of the extensive metagenomic and metabolomic remodeling that occurs in people reaching extreme ages may offer new targets for aging-related interventions.


Subject(s)
Centenarians , Nonagenarians , Aged, 80 and over , Child , Humans , Aged , Middle Aged , Longevity/genetics , Aging/genetics , Socioeconomic Factors
20.
Front Cell Dev Biol ; 9: 732527, 2021.
Article in English | MEDLINE | ID: mdl-34604235

ABSTRACT

The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.

SELECTION OF CITATIONS
SEARCH DETAIL