Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Plant Cell Rep ; 43(3): 69, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345745

ABSTRACT

KEY MESSAGE: Water deficit-inducible synthetic promoters, SD9-2 and SD18-1, designed for use in the dicot poplar, are functional in the monocot crop, rice.


Subject(s)
Oryza , Oryza/genetics , Droughts , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant
2.
Plant Biotechnol J ; 22(6): 1596-1609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38232002

ABSTRACT

Synthetic promoters may be designed using short cis-regulatory elements (CREs) and core promoter sequences for specific purposes. We identified novel conserved DNA motifs from the promoter sequences of leaf palisade and vascular cell type-specific expressed genes in water-deficit stressed poplar (Populus tremula × Populus alba), collected through low-input RNA-seq analysis using laser capture microdissection. Hexamerized sequences of four conserved 20-base motifs were inserted into each synthetic promoter construct. Two of these synthetic promoters (Syn2 and Syn3) induced GFP in transformed poplar mesophyll protoplasts incubated in 0.5 M mannitol solution. To identify effect of length and sequence from a valuable 20 base motif, 5' and 3' regions from a basic sequence (GTTAACTTCAGGGCCTGTGG) of Syn3 were hexamerized to generate two shorter synthetic promoters, Syn3-10b-1 (5': GTTAACTTCA) and Syn3-10b-2 (3': GGGCCTGTGG). These promoters' activities were compared with Syn3 in plants. Syn3 and Syn3-10b-1 were specifically induced in transient agroinfiltrated Nicotiana benthamiana leaves in water cessation for 3 days. In stable transgenic poplar, Syn3 presented as a constitutive promoter but had the highest activity in leaves. Syn3-10b-1 had stronger induction in green tissues under water-deficit stress conditions than mock control. Therefore, a synthetic promoter containing the 5' sequence of Syn3 endowed both tissue-specificity and water-deficit inducibility in transgenic poplar, whereas the 3' sequence did not. Consequently, we have added two new synthetic promoters to the poplar engineering toolkit: Syn3-10b-1, a green tissue-specific and water-deficit stress-induced promoter, and Syn3, a green tissue-preferential constitutive promoter.


Subject(s)
Gene Expression Regulation, Plant , Plants, Genetically Modified , Populus , Promoter Regions, Genetic , Populus/genetics , Populus/metabolism , Promoter Regions, Genetic/genetics , Plants, Genetically Modified/genetics , Dehydration/genetics , Stress, Physiological/genetics , Organ Specificity/genetics , Plant Leaves/genetics , Plant Leaves/metabolism
3.
Bio Protoc ; 13(8): e4660, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37113331

ABSTRACT

Plant protoplasts are useful to study both transcriptional regulation and protein subcellular localization in rapid screens. Protoplast transformation can be used in automated platforms for design-build-test cycles of plant promoters, including synthetic promoters. A notable application of protoplasts comes from recent successes in dissecting synthetic promoter activity with poplar mesophyll protoplasts. For this purpose, we constructed plasmids with TurboGFP driven by a synthetic promoter together with TurboRFP constitutively controlled by a 35S promoter, to monitor transformation efficiency, allowing versatile screening of high numbers of cells by monitoring green fluorescent protein expression in transformed protoplasts. Herein, we introduce a protocol for poplar mesophyll protoplast isolation followed by protoplast transformation and image analysis for the selection of valuable synthetic promoters. Graphical overview.

4.
Front Plant Sci ; 13: 1011939, 2022.
Article in English | MEDLINE | ID: mdl-36330242

ABSTRACT

Abiotic stresses can cause significant damage to plants. For sustainable bioenergy crop production, it is critical to generate resistant crops to such stress. Engineering promoters to control the precise expression of stress resistance genes is a very effective way to address the problem. Here we developed stably transformed Populus tremula × Populus alba hybrid poplar (INRA 717-1B4) containing one-of-six synthetic drought stress-inducible promoters (SDs; SD9-1, SD9-2, SD9-3, SD13-1, SD18-1, and SD18-3) identified previously by transient transformation assays. We screened green fluorescent protein (GFP) induction in poplar under osmotic stress conditions. Of six transgenic lines containing synthetic promoter, three lines (SD18-1, 9-2, and 9-3) had significant GFP expression in both salt and osmotic stress treatments. Each synthetic promoter employed heptamerized repeats of specific and short cis-regulatory elements (7 repeats of 7-8 bases). To verify whether the repeats of longer sequences can improve osmotic stress responsiveness, a transgenic poplar containing the synthetic promoter of the heptamerized entire SD9 motif (20 bases, containing all partial SD9 motifs) was generated and measured for GFP induction under osmotic stress. The heptamerized entire SD9 motif did not result in higher GFP expression than the shorter promoters consisting of heptamerized SD9-1, 9-2, and 9-3 (partial SD9) motifs. This result indicates that shorter synthetic promoters (~50 bp) can be used for versatile control of gene expression in transgenic poplar. These synthetic promoters will be useful tools to engineer stress-resilient bioenergy tree crops in the future.

SELECTION OF CITATIONS
SEARCH DETAIL