Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS Genet ; 16(4): e1008721, 2020 04.
Article in English | MEDLINE | ID: mdl-32339198

ABSTRACT

Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.


Subject(s)
Glaucoma, Open-Angle/genetics , Guanine Nucleotide Exchange Factors/genetics , Mutation , Adolescent , Adult , Aged , Cell Division , Cell Nucleus/metabolism , Eye/metabolism , Female , Glaucoma, Open-Angle/pathology , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Humans , Kinetochores/metabolism , Male , Middle Aged , Pedigree , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport
2.
Mol Med ; 26(1): 1, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31892304

ABSTRACT

BACKGROUND: Mutations in pre-mRNA splicing factor PRPF31 can lead to retinitis pigmentosa (RP). Although the exact disease mechanism remains unknown, it has been hypothesized that haploinsufficiency might be involved in the pathophysiology of the disease. METHODS: In this study, we have analyzed a mouse model containing the p.A216P mutation in Prpf31 gene. RESULTS: We found that mutant Prpf31 protein produces cytoplasmic aggregates in the retinal pigment epithelium and decreasing the protein levels of this splicing factor in the nucleus. Additionally, normal protein was recruited in insoluble aggregates when the mutant protein was overexpressed in vitro. In response to protein aggregation, Hspa4l is overexpressed. This member of the HSP70 family of chaperones might contribute to the correct folding and solubilization of the mutant protein, allowing its translocation to the nucleus. CONCLUSIONS: Our data suggests that a mechanism haploinsufficiency and dominant-negative is involved in retinal degeneration due to mutations in PRPF31. HSP70 over-expression might be a new therapeutic target for the treatment of retinal degeneration due to PRPF31 mutations.


Subject(s)
Eye Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Mutation , Retinal Pigment Epithelium/pathology , Retinitis Pigmentosa/genetics , Animals , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , Disease Models, Animal , Eye Proteins/chemistry , Eye Proteins/genetics , Haploinsufficiency , Humans , Mice , Protein Aggregates , Retinal Pigment Epithelium/metabolism , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology
3.
Invest Ophthalmol Vis Sci ; 59(12): 4812-4820, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30347075

ABSTRACT

Purpose: We describe the clinical features in two pedigrees with dominantly inherited retinopathy segregating the previously reported frameshifting mutation, c.836dupG (p.Ile280Asn*78) in the terminal exon of the RGR gene, and compare their haplotypes to that of the previously reported pedigree. Methods: The probands were ascertained at West Virginia University Eye Institute (WVU) and Moorfields Eye Hospital (MEH) through next generation sequencing (NGS) and whole genome sequencing (WGS) respectively. Clinical data included visual acuity (VA), visual fields, fundus autofluorescence (FAF), optical coherence tomography (OCT), and electroretinography (ERG). Haplotype analysis was performed using Sanger sequencing of the DNA from the molecularly ascertained individuals from the three pedigrees. Results: Nine heterozygous mutation carriers were identified in two families. Four carriers were asymptomatic; five carriers had variable VA reduction, visual field constriction, and experienced difficulty under dim illumination. Fundus examination of the asymptomatic carriers showed diffuse or reticular pigmentation of the retina; the symptomatic carriers had chorioretinal atrophy. FAF imaging showed widespread signal loss in advanced retinopathy, and reticular hyperautofluorescence in mild cases. OCT showed loss of outer retinal lamina in advanced disease. ERG showed moderate-to-severe rod-cone dysfunction in two symptomatic carriers; and was normal in three asymptomatic carriers. A shared haplotype flanking the mutation of up to 6.67 Mb was identified in both families. Within this region, 1.27 Mb were shared with the first family reported with this retinopathy. Conclusions: The clinical data suggest a variable and slow degeneration of the RPE. A shared chromosomal segment surrounding the RGR gene suggests a single ancestral mutational event underlying all three families.


Subject(s)
Frameshift Mutation , Receptors, G-Protein-Coupled/genetics , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retinal Pigment Epithelium/pathology , Adult , Aged , Aged, 80 and over , Alleles , DNA Mutational Analysis , Electroretinography , Female , Fluorescein Angiography , Genes, Dominant , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Pedigree , Tomography, Optical Coherence , Vision Disorders/diagnosis , Vision Disorders/genetics , Visual Acuity/physiology , Visual Fields/physiology , Whole Genome Sequencing , Young Adult
4.
Colloids Surf B Biointerfaces ; 149: 226-232, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27768912

ABSTRACT

Human bestrophin-1 (hBest1) is a transmembrane calcium-activated chloride channel protein - member of the bestrophin family of anion channels, predominantly expressed in the membrane of retinal pigment epithelium (RPE) cells. Mutations in the protein cause ocular diseases, named Bestrophinopathies. Here, we present the first Fourier transform infrared (FTIR) study of the secondary structure elements of hBest1, π/A isotherms and hysteresis, Brewster angle microscopy (BAM) and atomic force microscopy (AFM) visualization of the aggregation state of protein molecules dispersed as Langmuir and Langmuir-Blodgett films. The secondary structure of hBest1 consists predominantly of 310-helices (27.2%), α-helixes (16.3%), ß-turns and loops (32.2%). AFM images of hBest1 suggest approximate lateral dimensions of 100×160Å and 75Å height. Binding of calcium ions (Ca2+) induces conformational changes in the protein secondary structure leading to assembly of protein molecules and changes in molecular and macro-organization of hBest1 in monolayers. These data provide basic information needed in pursuit of molecular mechanisms underlying retinal and other pathologies linked to this protein.


Subject(s)
Calcium/chemistry , Chloride Channels/chemistry , Eye Proteins/chemistry , Membranes, Artificial , Animals , Bestrophins , Cations, Divalent , Chloride Channels/genetics , Dogs , Eye Proteins/genetics , Gene Expression , Humans , Madin Darby Canine Kidney Cells , Mutation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Surface Properties , Thermodynamics
5.
Am J Hum Genet ; 99(6): 1305-1315, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27889058

ABSTRACT

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families. REEP6 is a member of the REEP/Yop1 family of proteins that influence the structure of the endoplasmic reticulum but is relatively unstudied. The six variants identified include three frameshift variants, two missense variants, and a genomic rearrangement that disrupts exon 1. Human 3D organoid optic cups were used to investigate REEP6 expression and confirmed the expression of a retina-specific isoform REEP6.1, which is specifically affected by one of the frameshift mutations. Expression of the two missense variants (c.383C>T [p.Pro128Leu] and c.404T>C [p.Leu135Pro]) and the REEP6.1 frameshift mutant in cultured cells suggest that these changes destabilize the protein. Furthermore, CRISPR-Cas9-mediated gene editing was used to produce Reep6 knock-in mice with the p.Leu135Pro RP-associated variant identified in one RP-affected individual. The homozygous knock-in mice mimic the clinical phenotypes of RP, including progressive photoreceptor degeneration and dysfunction of the rod photoreceptors. Therefore, our study implicates REEP6 in retinal homeostasis and highlights a pathway previously uncharacterized in retinal dystrophy.


Subject(s)
Eye Proteins/genetics , Genes, Recessive/genetics , Membrane Transport Proteins/genetics , Mutation/genetics , Retinitis Pigmentosa/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Eye Proteins/chemistry , Eye Proteins/metabolism , Female , Humans , Induced Pluripotent Stem Cells/cytology , Male , Membrane Proteins , Mice , Mutation, Missense/genetics , Phenotype , Photoreceptor Cells, Vertebrate/cytology , Photoreceptor Cells, Vertebrate/metabolism , Young Adult
6.
Invest Ophthalmol Vis Sci ; 57(11): 4806-13, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27623334

ABSTRACT

PURPOSE: Mutation of RGR, encoding retinal G-protein coupled receptor was originally reported in association with retinal dystrophy in 1999. A single convincing recessive variant segregated perfectly in one family of five affected and two unaffected siblings. At least one further individual, homozygous for the same variant has since been reported. The aim of this report was to reevaluate the findings in consideration of data from a whole genome sequencing (WGS) study of a large cohort of retinal dystrophy families. METHODS: Whole genome sequencing was performed on 599 unrelated probands with inherited retinal disease. Detailed phenotyping was performed, including clinical evaluation, electroretinography, fundus photography, fundus autofluorescence imaging (FAF) and spectral-domain optical coherence tomography (OCT). RESULTS: Overall we confirmed that affected individuals from six unrelated families were homozygous for both the reported RGR p.Ser66Arg variant and a nearby frameshifting deletion in CDHR1 (p.Ile841Serfs119*). All had generalized rod and cone dysfunction with severe macular involvement. An additional proband was heterozygous for the same CDHR1/RGR haplotype but also carried a second null CDHR1 mutation on a different haplotype. A comparison of the clinical presentation of the probands reported here with other CDHR1-related retinopathy patients shows the phenotypes to be similar in presentation, severity, and rod/cone involvement. CONCLUSIONS: These data suggest that the recessive retinal disorder previously reported to be due to homozygous mutation in RGR is, at least in part, due to variants in CDHR1 and that the true consequences of RGR knock-out on human retinal structure and function are yet to be determined.


Subject(s)
Cadherins/genetics , DNA/genetics , Mutation , Nerve Tissue Proteins/genetics , Retina/metabolism , Retinal Dystrophies/genetics , Alleles , Cadherin Related Proteins , Cadherins/metabolism , DNA Mutational Analysis , Electroretinography , Female , Fluorescein Angiography , Fundus Oculi , Genes, Recessive , Homozygote , Humans , Male , Nerve Tissue Proteins/metabolism , Pedigree , Phenotype , Retina/pathology , Retinal Dystrophies/diagnosis , Retinal Dystrophies/metabolism , Tomography, Optical Coherence
7.
JAMA Ophthalmol ; 134(8): 924-7, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27281386

ABSTRACT

IMPORTANCE: Mutations in phototransduction and retinal signaling genes are implicated in many retinopathies. To our knowledge, GNB3 encoding the G-protein ß subunit 3 (Gß3) has not previously been implicated in human disease. OBSERVATIONS: In this brief report, whole-exome sequencing was conducted on a patient with distinct inherited retinal disease presenting in childhood, with a phenotype characterized by nystagmus, normal retinal examination, and mild disturbance of the central macula on detailed retinal imaging. This sequencing revealed a homozygous GNB3 nonsense mutation (c.124C>T; p.Arg42Ter). Whole-exome sequencing was conducted from April 2015 to July 2015. CONCLUSIONS AND RELEVANCE: Expressed in cone photoreceptors and ON-bipolar cells, Gß3 is essential in phototransduction and ON-bipolar cell signaling. Knockout of Gnb3 in mice results in dysfunction of cone photoreceptors and ON-bipolar cells and a naturally occurring chicken mutation leads to retinal degeneration. Identification of further affected patients may allow description of the phenotypic and genotypic spectrum of disease associated with GNB3 retinopathy.


Subject(s)
Codon, Nonsense , DNA/genetics , Heterotrimeric GTP-Binding Proteins/genetics , Retina/diagnostic imaging , Retinal Diseases/genetics , Child , DNA Mutational Analysis , Electroretinography , Genes, Recessive , Genotype , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Male , Pedigree , Retinal Diseases/diagnosis , Retinal Diseases/metabolism , Tomography, Optical Coherence
8.
Hum Mol Genet ; 25(12): 2483-2497, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27106100

ABSTRACT

Inherited retinal dystrophies are a group of genetically heterogeneous conditions with broad phenotypic heterogeneity. We analyzed a large five-generation pedigree with early-onset recessive retinal degeneration to identify the causative mutation. Linkage analysis and homozygosity mapping combined with exome sequencing were carried out to map the disease locus and identify the p.G178R mutation in the asparaginase like-1 gene (ASRGL1), segregating with the retinal dystrophy phenotype in the study pedigree. ASRGL1 encodes an enzyme that catalyzes the hydrolysis of L-asparagine and isoaspartyl-peptides. Studies on the ASRGL1 expressed in Escherichia coli and transiently transfected mammalian cells indicated that the p.G178R mutation impairs the autocatalytic processing of this enzyme resulting in the loss of functional ASRGL1 and leaving the inactive precursor protein as a destabilized and aggregation-prone protein. A zebrafish model overexpressing the mutant hASRGL1 developed retinal abnormalities and loss of cone photoreceptors. Our studies suggest that the p.G178R mutation in ASRGL1 leads to photoreceptor degeneration resulting in progressive vision loss.


Subject(s)
Asparaginase/genetics , Autoantigens/genetics , Genetic Predisposition to Disease , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/genetics , Adult , Animals , Disease Models, Animal , Exome/genetics , Genetic Linkage , Humans , Male , Middle Aged , Mutation, Missense , Pedigree , Phenotype , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/pathology , Visual Acuity/genetics , Visual Acuity/physiology , Zebrafish/genetics
9.
PLoS One ; 11(2): e0148678, 2016.
Article in English | MEDLINE | ID: mdl-26872363

ABSTRACT

The significance of the ubiquitin-proteasome system (UPS) for protein degradation has been highlighted in the context of neurodegenerative diseases, including retinal dystrophies. TOPORS, a dual E3 ubiquitin and SUMO1 ligase, forms a component of the UPS and selected substrates for its enzymatic activities, such as DJ-1/PARK7 and APOBEC2, are important for neuronal as well as retinal homeostasis, respectively. TOPORS is ubiquitously expressed, yet its mutations are only known to result in autosomal dominant retinitis pigmentosa. We performed a yeast two-hybrid (Y2H) screen of a human retinal cDNA library in order to identify interacting protein partners of TOPORS from the retina, and thus begin delineating the putative disease mechanism(s) associated with the retina-specific phenotype resulting from mutations in TOPORS. The screen led to isolation of the 26 S protease regulatory subunit 4 (P26s4/ PSMC1), an ATPase indispensable for correct functioning of UPS-mediated proteostasis. The interaction between endogenous TOPORS and P26s4 proteins was validated by co-immuno-precipitation from mammalian cell extracts and further characterised by immunofluorescent co-localisation studies in cell lines and retinal sections. Findings from hTERT-RPE1 and 661W cells demonstrated that TOPORS and P26s4 co-localise at the centrosome in cultured cells. Immunofluorescent staining of mouse retinae revealed a strong P26s4 reactivity at the interface between retinal pigmented epithelium (RPE) layer and the photoreceptors outer segments (OS). This finding leads us to speculate that P26s4, along with TOPORS, may have a role(s) in RPE phagocytosis, in addition to contributing to the overall photoreceptor and retinal homeostasis via the UPS.


Subject(s)
Adenosine Triphosphatases/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Protein Interaction Maps , Retina/metabolism , Ubiquitin-Protein Ligases/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/analysis , Adenosine Triphosphatases/genetics , Animals , Cell Line , DNA, Complementary/genetics , Humans , Mice , Mutation , Neoplasm Proteins/analysis , Neoplasm Proteins/genetics , Nuclear Proteins/analysis , Nuclear Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Retina/cytology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/analysis , Ubiquitin-Protein Ligases/genetics
10.
Biotechnol Biotechnol Equip ; 29(1): 101-104, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-26019622

ABSTRACT

Bestrophin-1 (Best1) is a transmembrane protein, found in the basolateral plasma membrane of retinal pigmented epithelial cells. The exact structure and functions of Best1 protein are still unclear. The protein is thought to be a regulator of ion channels, or an ion channel itself: it was shown to be permeable for chloride, thiocyanate, bicarbonate, glutamate and γ-aminobutyric acid (GABA). Mutations in the gene for Best1 are leading to best vitelliform macular dystrophy (BVMD) and are found in several other types of maculopathy. In order to obtain additional information about Best1 protein, we determined cell polarization of a stably transfected Madin-Darby canine kidney cell line II (MDCK II) cell line, expressing human Best1. We measured the transepithelial resistance of transfected and non-transfected MDCK cells by voltmeter EVOM, over 10 days at 24 hour intervals. The first few days (first-fourth day) both cell lines showed the same or similar values ​​of transmembrane resistance. As expected, on the fifth day the non-transfected cells showed maximum value of epithelial resistance, corresponding to the forming of monolayer. The transfected cells showed maximum value of transepithelial resistance on the ninth day of their cultivation. Phalloidin staining of actin demonstrated the difference in actin arrangements between transfected and non-transfected cells due to Best1. As a consequence of actin rearrangement, Best1 strongly affects the transepithelial resistance of polarizing stably transfected MDCK cells. Our results suggest that Best1 protein has an effect on transepithelial resistance and actin rearrangements of polarized stably transfected MDCK cells.

11.
Invest Ophthalmol Vis Sci ; 56(13): 8297-305, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720483

ABSTRACT

PURPOSE: The French Canadian population of Quebec is a unique, well-known founder population with religious, linguistic, and geographic isolation. The genetics of retinitis pigmentosa (RP) in Quebec is not well studied thus far. The purpose of our study was to establish the genetic architecture of autosomal dominant RP (adRP) and to characterize the phenotypes associated with new adRP mutations in Quebec. METHODS: Sanger sequencing of the commonly mutated currently known adRP genes was performed in a clinically well-characterized cohort of 60 adRP French Canadian families. Phenotypes were analyzed by projected visual acuity (best corrected), Goldmann visual fields, optical coherence tomography (OCT), fundus autofluorescence (FAF), and ERG. The potential effect of the novel mutations was assessed using in silico bioinformatic tools. The pathogenicity of all variants was then confirmed by segregation analysis within the families, when available. RESULTS: We identified the causal mutation/gene in 24 of our adRP families, as 24 (40%) of 60 patients had adRP mutations in six known adRP genes. Eleven (46%) of these mutations were in RHO, four mutations (17%) were found in SNRNP200, three mutations (12.5%) in PRPH2/RDS, three mutations (12.5%) in TOPORS, two mutations (8%) in PRPF31, and one mutation (4%) in IMPDH1. Four mutations were novel. We identified new mutations in RHO (p.S270I), PRPF31 (p.R288W), IMPDH1 (p.Q318H), and TOPORS (p.H889R); the rest were previously reported. We present the genotype-phenotype characteristics of the four novel missense mutations. CONCLUSIONS: This is the first large screening of adRP genes in the founder population of Quebec. Our prevalence of known adRP genes is 40% in the French Canadian population, which is lower than in other adRP populations around the world, illustrating the uniqueness of the French Canadian population. Our findings are crucial in expanding the current understanding of the genotypic-phenotypic spectrum of RP and documenting the genetic architecture of our founder population.


Subject(s)
DNA/genetics , Eye Proteins/genetics , Mutation , Retinitis Pigmentosa/genetics , Adult , Aged , DNA Mutational Analysis , Eye Proteins/metabolism , Female , Genes, Dominant , Genotype , Humans , Male , Middle Aged , Pedigree , Phenotype , Prevalence , Quebec/epidemiology , Retinitis Pigmentosa/epidemiology , Retinitis Pigmentosa/metabolism
12.
Mol Vis ; 20: 1307-17, 2014.
Article in English | MEDLINE | ID: mdl-25352739

ABSTRACT

PURPOSE: To describe the genotype-phenotype correlation and serial observations in a five-generation Czech family with X-linked retinitis pigmentosa (XLRP) associated with severe visual impairment in women. METHODS: Comprehensive ophthalmological examination including spectral domain optical coherence tomography (SD-OCT) was performed. Based on the pedigree structure and women being severely affected, autosomal dominant inheritance was suspected, and screening for known mutations by genotyping microarray was performed. Subsequently, direct sequencing of ORF15 RPGR was undertaken. RESULTS: Eighteen family members (nine women and nine men) were examined. A pathogenic variant, c.2543del in ORF15 of RPGR, was found to segregate with disease. The oldest woman and her two sisters had no perception of light in their sixth decade. Four women and five men had signs and symptoms of typical XLRP, including moderate to high myopia. Three other women also had moderate to high myopia and myopic astigmatism but without the presence of bone spicule-like formation. Severe disruption of macular architecture on SD-OCT was equally common in both sexes. Only one 32-year-old female carrier had clinically normal findings. Subfoveal choroidal thickness was decreased in all affected men and in all female carriers, except the only carrier with a normal fundus examination. CONCLUSIONS: The c.2543del mutation in ORF15 of RPGR is associated with a severe phenotype in the women in this family. The presence of a significant myopic refractive error, in the absence of male-to-male transmission, may be indicative of X-linked inheritance. Measurements of choroidal thickness may help in clinically identifying carrier status.


Subject(s)
Base Sequence , Eye Proteins/genetics , Genes, X-Linked , Retina/metabolism , Retinitis Pigmentosa/genetics , Sequence Deletion , Adolescent , Adult , Aged , Child , Choroid/metabolism , Choroid/pathology , Female , Genes, Dominant , Heterozygote , Humans , Male , Middle Aged , Molecular Sequence Data , Open Reading Frames , Pedigree , Retina/pathology , Retinitis Pigmentosa/pathology , Severity of Illness Index , Sex Factors , Tomography, Optical Coherence
13.
Invest Ophthalmol Vis Sci ; 55(11): 7147-58, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25190649

ABSTRACT

PURPOSE: To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP). METHODS: A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene. RESULTS: Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families. CONCLUSIONS: We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%.


Subject(s)
DNA/genetics , Hexokinase/genetics , Mutation , Retina/metabolism , Retinitis Pigmentosa/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Follow-Up Studies , Genes, Dominant , Genetic Linkage , Haplotypes , Hexokinase/metabolism , Humans , Male , Middle Aged , Pedigree , Phenotype , Retina/pathology , Retinitis Pigmentosa/enzymology , Retinitis Pigmentosa/pathology , Retrospective Studies , Young Adult
14.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24899048

ABSTRACT

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Subject(s)
Genetic Association Studies , Genetic Variation , Macular Degeneration/genetics , Microfilament Proteins/genetics , Adult , Aged , Amino Acid Sequence , Bruch Membrane/metabolism , DNA Mutational Analysis , Exome , Extracellular Matrix/metabolism , Fibrillin-2 , Fibrillins , High-Throughput Nucleotide Sequencing , Humans , Macular Degeneration/diagnosis , Male , Meta-Analysis as Topic , Microfilament Proteins/metabolism , Middle Aged , Models, Molecular , Molecular Sequence Data , Mutation , Pedigree , Protein Conformation , Protein Stability , Retina/metabolism , Retina/pathology , Sequence Alignment
15.
Am J Hum Genet ; 94(5): 760-9, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24791901

ABSTRACT

In a subset of inherited retinal degenerations (including cone, cone-rod, and macular dystrophies), cone photoreceptors are more severely affected than rods; ABCA4 mutations are the most common cause of this heterogeneous class of disorders. To identify retinal-disease-associated genes, we performed exome sequencing in 28 individuals with "cone-first" retinal disease and clinical features atypical for ABCA4 retinopathy. We then conducted a gene-based case-control association study with an internal exome data set as the control group. TTLL5, encoding a tubulin glutamylase, was highlighted as the most likely disease-associated gene; 2 of 28 affected subjects harbored presumed loss-of-function variants: c.[1586_1589delAGAG];[1586_1589delAGAG], p.[Glu529Valfs(∗)2];[Glu529Valfs(∗)2], and c.[401delT(;)3354G>A], p.[Leu134Argfs(∗)45(;)Trp1118(∗)]. We then inspected previously collected exome sequence data from individuals with related phenotypes and found two siblings with homozygous nonsense variant c.1627G>T (p.Glu543(∗)) in TTLL5. Subsequently, we tested a panel of 55 probands with retinal dystrophy for TTLL5 mutations; one proband had a homozygous missense change (c.1627G>A [p.Glu543Lys]). The retinal phenotype was highly similar in three of four families; the sibling pair had a more severe, early-onset disease. In human and murine retinae, TTLL5 localized to the centrioles at the base of the connecting cilium. TTLL5 has been previously reported to be essential for the correct function of sperm flagella in mice and play a role in polyglutamylation of primary cilia in vitro. Notably, genes involved in the polyglutamylation and deglutamylation of tubulin have been associated with photoreceptor degeneration in mice. The electrophysiological and fundus autofluorescence imaging presented here should facilitate the molecular diagnosis in further families.


Subject(s)
Carrier Proteins/genetics , Peptide Synthases/genetics , Retinal Dystrophies/genetics , Adult , Alleles , Animals , Female , Genes, Recessive , Genetic Variation , Humans , Male , Mice , Middle Aged , Mutation , Pedigree
16.
Biomed Res Int ; 2013: 517570, 2013.
Article in English | MEDLINE | ID: mdl-24024198

ABSTRACT

Here, we report two novel GUCA1A (the gene for guanylate cyclase activating protein 1) mutations identified in unrelated Spanish families affected by autosomal dominant retinal degeneration (adRD) with cone and rod involvement. All patients from a three-generation adRD pedigree underwent detailed ophthalmic evaluation. Total genome scan using single-nucleotide polymorphisms and then the linkage analysis were undertaken on the pedigree. Haplotype analysis revealed a 55.37 Mb genomic interval cosegregating with the disease phenotype on chromosome 6p21.31-q15. Mutation screening of positional candidate genes found a heterozygous transition c.250C>T in exon 4 of GUCA1A, corresponding to a novel mutation p.L84F. A second missense mutation, c.320T>C (p.I107T), was detected by screening of the gene in a Spanish patients cohort. Using bioinformatics approach, we predicted that either haploinsufficiency or dominant-negative effect accompanied by creation of a novel function for the mutant protein is a possible mechanism of the disease due to c.250C>T and c.320T>C. Although additional functional studies are required, our data in relation to the c.250C>T mutation open the possibility that transacting factors binding to de novo created recognition site resulting in formation of aberrant splicing variant is a disease model which may be more widespread than previously recognized as a mechanism causing inherited RD.


Subject(s)
Genetic Linkage , Guanylate Cyclase-Activating Proteins/genetics , Macular Degeneration/genetics , Retinal Degeneration/genetics , Female , Genome, Human , Humans , Macular Degeneration/pathology , Male , Mutation, Missense , Pedigree , Polymorphism, Single Nucleotide , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/physiopathology , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology
17.
Hum Mol Genet ; 22(8): 1507-15, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23297361

ABSTRACT

Ataxia-telangiectasia and Rad3 (ATR), a sensor of DNA damage, is associated with the regulation and control of cell division. ATR deficit is known to cause Seckel syndrome, characterized by severe proportionate short stature and microcephaly. We used a mouse model for Seckel disease to study the effect of ATR deficit on retinal development and function and we have found a new role for ATR, which is critical for the postnatal development of the photoreceptor (PR) layer in mouse retina. The structural and functional characterization of the ATR(+/s) mouse retinas displayed a specific, severe and early degeneration of rod and cone cells resembling some characteristics of human retinal degenerations. A new localization of ATR in the cilia of PRs and the fact that mutant mice have shorter cilia suggests that the PR degeneration here described results from a ciliary defect.


Subject(s)
Cell Cycle Proteins/genetics , Photoreceptor Cells, Vertebrate , Protein Serine-Threonine Kinases/genetics , Retina/metabolism , Retinal Degeneration/genetics , Animals , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , DNA Damage , Disease Models, Animal , Dwarfism/genetics , Dwarfism/pathology , Facies , Gene Expression Regulation, Developmental , Humans , Mice , Microcephaly/genetics , Microcephaly/pathology , Mutation , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Connecting Cilium/metabolism , Photoreceptor Connecting Cilium/pathology , Protein Serine-Threonine Kinases/metabolism , Retina/growth & development , Retinal Degeneration/pathology
18.
Eur J Hum Genet ; 21(3): 338-42, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22929024

ABSTRACT

Here we report recruitment of a three-generation Romani (Gypsy) family with autosomal dominant cone-rod dystrophy (adCORD). Involvement of known adCORD genes was excluded by microsatellite (STR) genotyping and linkage analysis. Subsequently, two independent total-genome scans using STR markers and single-nucleotide polymorphisms (SNPs) were performed. Haplotype analysis revealed a single 6.7-Mb novel locus between markers D10S1757 and D10S1782 linked to the disease phenotype on chromosome 10q26. Linkage analysis gave a maximum LOD score of 3.31 for five fully informative STR markers within the linked interval corresponding to the expected maximum in the family. Multipoint linkage analysis of SNP genotypes yielded a maximum parametric linkage score of 2.71 with markers located in the same chromosomal interval. There is no previously mapped CORD locus in this interval, and therefore the data reported here is novel and likely to identify a new gene that may eventually contribute to new knowledge on the pathogenesis of this condition. Sequencing of several candidate genes within the mapped interval led to negative findings in terms of the underlying molecular pathogenesis of the disease in the family. Analysis by comparative genomic hybridization excluded large chromosomal aberrations as causative of adCORD in the pedigree.


Subject(s)
Chromosomes, Human, Pair 10 , Genes, Dominant , Retinitis Pigmentosa/genetics , Female , Genetic Linkage , Genetic Loci , Genetic Predisposition to Disease , Humans , Lod Score , Male , Microsatellite Repeats , Pedigree , Polymorphism, Single Nucleotide , Romania/ethnology
19.
J Mol Genet Med ; 7(2)2013 Aug.
Article in English | MEDLINE | ID: mdl-25729402

ABSTRACT

Mutations in PRPF31 have been implicated in retinitis pigmentosa, a blinding disease caused by degeneration of rod photoreceptors. The disease mechanism in the majority of cases is haploinsufficiency. Crucially, attempts at generation of animal models of disease have proved unsuccessful, yielding animals with a visual phenotype that does not mirror human disease. This suggests that, in these animals, the transcriptional regulation of PRPF31 is different to humans and compared to other species. Study of the evolution of the PRPF31 core promoter has important implications for our understanding of human disease, as disease phenotype is modified by differentially expressed alleles in the population. PRPF31 lies in a head-to-head arrangement with TFPT, a gene involved in cellular apoptosis. The two genes were shown to share common regulatory elements in the human genome. In this study, the core promoters of PRPF31 and TFPT were characterised by dual-luciferase reporter assay using genomic DNA from the green monkey, domestic dog and house mouse. It was found that the core promoters were conserved between human and monkey. In dog, the TFPT core promoter was conserved, but different PRPF31 gene architecture meant the gene was controlled by a long-range promoter lying some 2000bp from the transcription start site. There was very low level of conservation (<20%) of the PRPF31 5' region between mouse and human. It was shown that mouse populations did not show variable Prpf31 expression levels, revealing a potential explanation for the lack of phenotype observed in the Prpf31 knock-out mouse model.

20.
Nat Genet ; 44(9): 1040-5, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22842227

ABSTRACT

Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss(1,2). Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes(3) (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD(+)) biosynthesis(4,5). Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA.


Subject(s)
Leber Congenital Amaurosis/genetics , Mutation , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Base Sequence , Case-Control Studies , Child , Child, Preschool , DNA Mutational Analysis , Family , Female , Genetic Predisposition to Disease , Humans , Leber Congenital Amaurosis/complications , Male , Mutation/physiology , Nicotinamide-Nucleotide Adenylyltransferase/physiology , Pedigree , Retinal Degeneration/complications , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics
SELECTION OF CITATIONS
SEARCH DETAIL