Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Nat Commun ; 15(1): 6239, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043709

ABSTRACT

Landslides sometimes creep for decades before undergoing runaway acceleration and catastrophic failure. Observing and monitoring the evolution of strain in time and space is crucial to understand landslide processes, including the transition from slow to fast movement. However, the limited spatial or temporal resolution of existing landslide monitoring instrumentation limits the study of these processes. We employ distributed acoustic sensing strain data below 1 Hertz frequency during a three-day rainfall at the Hollin Hill landslide and quantify strain-rate changes at meter and sub-minute scales. We observe near-surface strain onset at the head scarp, strain acceleration at a developing rupture zone, retrogression towards the scarp, and flow-lobe activity. These processes with displacements of less than 0.5 mm are undetected using other methods. However, the millimeter processes over three days agree with previously observed seasonal landslide patterns. Here, we show landslide processes occurring with nanostrain-rate sensitivity at spatiotemporal resolution previously not possible.

3.
Sci Total Environ ; 566-567: 350-359, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27228305

ABSTRACT

A full-scale field experiment applying 4D (3D time-lapse) cross-borehole Electrical Resistivity Tomography (ERT) to the monitoring of simulated subsurface leakage was undertaken at a legacy nuclear waste silo at the Sellafield Site, UK. The experiment constituted the first application of geoelectrical monitoring in support of decommissioning work at a UK nuclear licensed site. Images of resistivity changes occurring since a baseline date prior to the simulated leaks revealed likely preferential pathways of silo liquor simulant flow in the vadose zone and upper groundwater system. Geophysical evidence was found to be compatible with historic contamination detected in permeable facies in sediment cores retrieved from the ERT boreholes. Results indicate that laterally discontinuous till units forming localized hydraulic barriers substantially affect flow patterns and contaminant transport in the shallow subsurface at Sellafield. We conclude that only geophysical imaging of the kind presented here has the potential to provide the detailed spatial and temporal information at the (sub-)meter scale needed to reduce the uncertainty in models of subsurface processes at nuclear sites.


Subject(s)
Environmental Monitoring/methods , Groundwater/analysis , Water Pollutants, Radioactive/analysis , Electric Conductivity , England , Nuclear Power Plants , Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL