Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Cancers (Basel) ; 16(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39123468

ABSTRACT

Glioma is the most prevalent type of primary central nervous system cancer, while glioblastoma (GBM) is its most aggressive variant, with a median survival of only 15 months when treated with maximal surgical resection followed by chemoradiation therapy (CRT). CD133 is a potentially significant GBM biomarker. However, current clinical biomarker studies rely on invasive tissue samples. These make prolonged data acquisition impossible, resulting in increased interest in the use of liquid biopsies. Our study, analyzed 7289 serum proteins from 109 patients with pathology-proven GBM obtained prior to CRT using the aptamer-based SOMAScan® proteomic assay technology. We developed a novel methodology that identified 24 proteins linked to both serum CD133 and 12-month overall survival (OS) through a multi-step machine learning (ML) analysis. These identified proteins were subsequently subjected to survival and clustering evaluations, categorizing patients into five risk groups that accurately predicted 12-month OS based on their protein profiles. Most of these proteins are involved in brain function, neural development, and/or cancer biology signaling, highlighting their significance and potential predictive value. Identifying these proteins provides a valuable foundation for future serum investigations as validation of clinically applicable GBM biomarkers can unlock immense potential for diagnostics and treatment monitoring.

2.
Diagnostics (Basel) ; 14(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39001264

ABSTRACT

Glioblastoma (GBM) is the most aggressive and the most common primary brain tumor, defined by nearly uniform rapid progression despite the current standard of care involving maximal surgical resection followed by radiation therapy (RT) and temozolomide (TMZ) or concurrent chemoirradiation (CRT), with an overall survival (OS) of less than 30% at 2 years. The diagnosis of tumor progression in the clinic is based on clinical assessment and the interpretation of MRI of the brain using Response Assessment in Neuro-Oncology (RANO) criteria, which suffers from several limitations including a paucity of precise measures of progression. Given that imaging is the primary modality that generates the most quantitative data capable of capturing change over time in the standard of care for GBM, this renders it pivotal in optimizing and advancing response criteria, particularly given the lack of biomarkers in this space. In this study, we employed artificial intelligence (AI)-derived MRI volumetric parameters using the segmentation mask output of the nnU-Net to arrive at four classes (background, edema, non-contrast enhancing tumor (NET), and contrast-enhancing tumor (CET)) to determine if dynamic changes in AI volumes detected throughout therapy can be linked to PFS and clinical features. We identified associations between MR imaging AI-generated volumes and PFS independently of tumor location, MGMT methylation status, and the extent of resection while validating that CET and edema are the most linked to PFS with patient subpopulations separated by district rates of change throughout the disease. The current study provides valuable insights for risk stratification, future RT treatment planning, and treatment monitoring in neuro-oncology.

3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612892

ABSTRACT

Glioblastoma (GBM) is a fatal brain tumor with limited treatment options. O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is the central molecular biomarker linked to both the response to temozolomide, the standard chemotherapy drug employed for GBM, and to patient survival. However, MGMT status is captured on tumor tissue which, given the difficulty in acquisition, limits the use of this molecular feature for treatment monitoring. MGMT protein expression levels may offer additional insights into the mechanistic understanding of MGMT but, currently, they correlate poorly to promoter methylation. The difficulty of acquiring tumor tissue for MGMT testing drives the need for non-invasive methods to predict MGMT status. Feature selection aims to identify the most informative features to build accurate and interpretable prediction models. This study explores the new application of a combined feature selection (i.e., LASSO and mRMR) and the rank-based weighting method (i.e., MGMT ProFWise) to non-invasively link MGMT promoter methylation status and serum protein expression in patients with GBM. Our method provides promising results, reducing dimensionality (by more than 95%) when employed on two large-scale proteomic datasets (7k SomaScan® panel and CPTAC) for all our analyses. The computational results indicate that the proposed approach provides 14 shared serum biomarkers that may be helpful for diagnostic, prognostic, and/or predictive operations for GBM-related processes, given further validation.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Proteomics , Temozolomide/therapeutic use , Blood Proteins , Brain Neoplasms/genetics , O(6)-Methylguanine-DNA Methyltransferase , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , DNA Repair Enzymes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL