Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Genome Biol ; 24(1): 277, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049885

ABSTRACT

BACKGROUND: Recent state-of-the-art sequencing technologies enable the investigation of challenging regions in the human genome and expand the scope of variant benchmarking datasets. Herein, we sequence a Chinese Quartet, comprising two monozygotic twin daughters and their biological parents, using four short and long sequencing platforms (Illumina, BGI, PacBio, and Oxford Nanopore Technology). RESULTS: The long reads from the monozygotic twin daughters are phased into paternal and maternal haplotypes using the parent-child genetic map and for each haplotype. We also use long reads to generate haplotype-resolved whole-genome assemblies with completeness and continuity exceeding that of GRCh38. Using this Quartet, we comprehensively catalogue the human variant landscape, generating a dataset of 3,962,453 SNVs, 886,648 indels (< 50 bp), 9726 large deletions (≥ 50 bp), 15,600 large insertions (≥ 50 bp), 40 inversions, 31 complex structural variants, and 68 de novo mutations which are shared between the monozygotic twin daughters. Variants underrepresented in previous benchmarks owing to their complexity-including those located at long repeat regions, complex structural variants, and de novo mutations-are systematically examined in this study. CONCLUSIONS: In summary, this study provides high-quality haplotype-resolved assemblies and a comprehensive set of benchmarking resources for two Chinese monozygotic twin samples which, relative to existing benchmarks, offers expanded genomic coverage and insight into complex variant categories.


Subject(s)
Benchmarking , East Asian People , Twins, Monozygotic , Humans , East Asian People/genetics , Genomics , Haplotypes , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Twins, Monozygotic/genetics , Twin Studies as Topic
2.
Adv Sci (Weinh) ; 9(30): e2202149, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36039936

ABSTRACT

The execution of biological activities inside space-limited cell nuclei requires sophisticated organization. Current studies on the 3D genome focus on chromatin interactions and local structures, e.g., topologically associating domains (TADs). In this study, two global physical properties: DNA density and distance to nuclear periphery (DisTP), are introduced and a 2D matrix, D2 plot, is constructed for mapping genetic and epigenetic markers. Distinct patterns of functional markers on the D2 plot, indicating its ability to compartmentalize functional genome regions, are observed. Furthermore, enrichments of transcription-related markers are concatenated into a cross-species transcriptional activation model, where the nucleus is divided into four areas: active, intermediate, repress and histone, and repress and repeat. Based on the trajectories of the genomic regions on D2 plot, the constantly active and newly activated genes are successfully identified during olfactory sensory neuron maturation. The analysis reveals that the D2 plot effectively categorizes functional regions and provides a universal and transcription-related measurement for the 3D genome.


Subject(s)
Chromatin , Histones , Histones/genetics , Chromatin/genetics , Genome/genetics , DNA/genetics , Genomics
3.
Nat Commun ; 12(1): 6030, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654815

ABSTRACT

For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.


Subject(s)
Biosynthetic Pathways , Chromosomes/metabolism , Morphinans/metabolism , Noscapine/metabolism , Papaver/genetics , Papaver/metabolism , Alkaloids/chemistry , Alkaloids/metabolism , Benzylisoquinolines/metabolism , Biosynthetic Pathways/genetics , Evolution, Molecular , Genome , Genomics , Multigene Family , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL