Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Micron ; 119: 1-7, 2019 04.
Article in English | MEDLINE | ID: mdl-30639793

ABSTRACT

The ternary iron arsenide compound BaFe2As2 exhibits a structural phase transition from tetragonal to orthorhombic at a temperature of about 140 K. The twin lamellae arising below this transition temperature were studied in undoped single crystalline bulk and epitaxial thin film samples using electron backscatter diffraction in a scanning electron microscope equipped with a helium cryostat. Applying this technique on bulk single crystals a characteristic twin lamella size in the range of 0.1 µm up to a few µm was observed. In contrast, in epitaxially strained thin films the phase transition is not observed at temperatures above 19 K.

2.
Nat Commun ; 4: 2877, 2013.
Article in English | MEDLINE | ID: mdl-24309386

ABSTRACT

The discovery of superconductivity with a transition temperature, Tc, up to 65 K in single-layer FeSe (bulk Tc=8 K) films grown on SrTiO3 substrates has attracted special attention to Fe-based thin films. The high Tc is a consequence of the combined effect of electron transfer from the oxygen-vacant substrate to the FeSe thin film and lattice tensile strain. Here we demonstrate the realization of superconductivity in the parent compound BaFe2As2 (no bulk Tc) just by tensile lattice strain without charge doping. We investigate the interplay between strain and superconductivity in epitaxial BaFe2As2 thin films on Fe-buffered MgAl2O4 single crystalline substrates. The strong interfacial bonding between Fe and the FeAs sublattice increases the Fe-Fe distance due to the lattice misfit, which leads to a suppression of the antiferromagnetic spin density wave and induces superconductivity with bulk Tc≈10 K. These results highlight the role of structural changes in controlling the phase diagram of Fe-based superconductors.

SELECTION OF CITATIONS
SEARCH DETAIL