Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.343
Filter
1.
Sci Adv ; 10(32): eadl6398, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39110786

ABSTRACT

The growing interest in cost-effective and high-performing perovskite solar cells (PSCs) has driven extensive research. However, the challenge lies in upscaling PSCs while maintaining high performance. This study focuses on achieving uniform and compact perovskite films without pinholes and interfacial voids during upscaling from small PSCs to large-area modules. Competition in nucleation at concavities with various angles on rough-textured substrates during the gas-pumping drying process, coupled with different drying rates across the expansive film, aggravates these issues. Consequently, substrate roughness notably influences the deposition window of compact large-area perovskite films. We propose a supersaturation regulation approach aimed at achieving compact deposition of high-quality perovskite films over large areas. This involves introducing a rapid drying strategy to induce a high-supersaturation state, thereby equalizing nucleation across diverse concavities. This breakthrough enables the production of perovskite photovoltaics with high efficiencies of 25.58, 21.86, and 20.62% with aperture areas of 0.06, 29, and 1160 square centimeters, respectively.

2.
Commun Biol ; 7(1): 972, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39122786

ABSTRACT

Dental pulp stem cells (DPSC) have shown osteogenic and bone regenerative potential. Improving the in situ bone regeneration potential of DPSC is crucial for their application as seed cells during bone defect reconstruction in clinics. This study aimed to develop DPSC-derived organoid-like microspheroids as effective seeds for bone tissue engineering applications. DPSC osteogenic microspheroids (70 µm diameter) were cultured in a polydimethylsiloxane-mold-based agarose-gel microwell-culture-system with or without cannabidiol (CBD)-treatment. Results of in vitro studies showed higher osteogenic differentiation potential of microspheroids compared with 2D-cultured-DPSC. CBD treatment further improved the osteogenic differentiation potential of microspheroids. The effect of CBD treatment in the osteogenic differentiation of microspheroids was more pronounced compared with that of CBD-treated 2D-cultured-DPSC. Microspheroids showed a higher degree of bone regeneration in nude mice calvarial bone defect compared to 2D-cultured-DPSC. CBD-treated microspheroids showed the most robust in situ bone regenerative potential compared with microspheroids or CBD-treated 2D-cultured-DPSC. According to mRNA sequencing, bioinformatic analysis, and confirmation study, the higher osteogenic potential of CBD-treated microspheroids was mainly attributed to WNT6 upregulation. Taken together, DPSC microspheroids have robust osteogenic potential and can effectively translate the effect of in vitro osteoinductive stimulation during in situ bone regeneration, indicating their application potential during bone defect reconstruction in clinics.


Subject(s)
Cannabidiol , Cell Differentiation , Dental Pulp , Osteogenesis , Stem Cells , Up-Regulation , Osteogenesis/drug effects , Animals , Cannabidiol/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Mice , Up-Regulation/drug effects , Dental Pulp/cytology , Dental Pulp/drug effects , Cell Differentiation/drug effects , Organoids/drug effects , Organoids/metabolism , Humans , Mice, Nude , Cells, Cultured , Bone Regeneration/drug effects
3.
J Neurosci Methods ; : 110246, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127351

ABSTRACT

Preterm infants are a high-risk group for brain injury, and it is important to evaluate the neurological recovery of preterm infants. Therefore, this paper evaluates the neurological recovery in preterm infants at high risk of brain injury by amplitude-integrated EEG and GMs scale. The study collected basic information on preterm infants and performed amplitude integrated EEG examination and GMs scale evaluation. Amplitude integrated EEG examination attaches electrodes using multielectrode arrays onto specific areas of the premature head to record brain wave activity to monitor electrical activity in the preterm brain in real time and amplify and process through the signals received by the electrodes to obtain more detailed EEG data. The GMs scale evaluates the developmental and functional status of the child and allows an objective assessment of the development and recovery of neurological function by observing their performance in motor, language, cognition, and social interaction. Analysis of the data by statistical processing. The results showed that early brain injury was evident in high-risk infants. Amplitude integrated EEG parameters can have some predictive value for brain injury. There were also differences in GMs scale assessment between brain injury and non-brain injury. Amplitude integrated EEG combined with GMs scale has certain value in predicting brain injury and can provide an important basis for early intervention in children with preterm brain injury and help to improve their neurodevelopmental outcome.

4.
Small Methods ; : e2400519, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39108187

ABSTRACT

The development of nanomaterials for energy storage and conversion has always been important. Layered double hydroxide (LDH) is a promising material due to its high capacity, tunable composition and easy synthesis. In this work, the morphology of NiCo-LDH is tuned with surfactants including sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), and investigated the correlation between morphology and electrochemical properties. NiCo-LDH-SDS with a layered structure exhibited a specific capacitance of 1004 C g-1 at 1 A g-1, which is higher than that of the needle-like NiCo-LDH-CTAB (678 C g-1) and the rod-like NiCo-LDH (279 C g-1). Meanwhile, NiCo-LDH-SDS and NiCo-LDH-CTAB showed a reduction of 36 and 19 mV, respectively, in their overpotentials at 10 mA cm-2 compared to NiCo-LDH. Contact angle and adhesive force measurements proved the influence of morphology on the interfacial properties that layered structure is favorable for the timely detachment of the bubbles. Therefore, rational morphology regulation of LDH can effectively alter the gas-liquid-solid interface and thereby accelerate the reaction kinetics. The connections between morphologies, bubbles releasing and electrochemical performance are well established in this work, which can be applied in the investigation of nanomaterials for energy-related activities, especially the ones concerning bubbles releasing processes.

5.
Kaohsiung J Med Sci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101328

ABSTRACT

This study aimed to investigate the therapeutic potential of human adipose-derived mesenchymal stem cells (hADSCs) modified with recombinant adeno-associated virus (rAAV) carrying the vascular endothelial growth factor 165 (VEGF165) gene in peripheral nerve injury (PNI). The hADSCs were categorized into blank, control (transduced with rAAV control vector), and VEGF165 (transduced with rAAV VEGF165 vector) groups. Subsequently, Schwann cell differentiation was induced, and Schwann cell markers were assessed. The sciatic nerve injury mouse model received injections of phosphate-buffered saline (PBS group), PBS containing hADSCs (hADSCs group), rAAV control vector (control-hADSCs group), or rAAV VEGF165 vector (VEGF165-hADSCs group) into the nerve defect site. Motor function recovery, evaluated through the sciatic function index (SFI), and nerve regeneration, assessed via toluidine blue staining along with scrutiny of Schwann cell markers and neurotrophic factors, were conducted. Modified hADSCs exhibited enhanced Schwann cell differentiation and elevated expression of Schwann cell markers [S100 calcium-binding protein B (S100B), NGF receptor (NGFR), and glial fibrillary acidic protein (GFAP)]. Mice in the VEGF165-hADSCs group demonstrated improved motor function recovery compared to those in the other three groups, accompanied by increased fiber diameter, axon diameter, and myelin thickness, as well as elevated expression of Schwann cell markers (S100B, NGFR, and GFAP) and neurotrophic factors [mature brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF)] in the distal nerve segment. rAAV-VEGF165 modification enhances hADSC potential in PNI, promoting motor recovery and nerve regeneration. Elevated Schwann cell markers and neurotrophic factors underscore therapy benefits, providing insights for nerve injury strategies.

6.
Int Immunopharmacol ; 140: 112803, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094357

ABSTRACT

BACKGROUND: Pulmonary fibrosis (PF) leads to excessive deposition of fibrous connective tissue in the lungs, increasing the risk of lung cancer due to the enhanced activity of fibroblasts (FBs). Fibroblast-mediated collagen fiber deposition creates a tumor-like microenvironment, laying the foundation for tumorigenesis. Clinically, numerous cases of lung cancer induced by pulmonary fibrosis have been observed. In recent years, the study of nucleotide point mutations, which provide more detailed insights than gene expression, has made significant advancements, offering new perspectives for clinical research. METHODS: We initially employed Mendelian randomization to ascertain that the initial stage of lung cancer induced by PF belongs to small cell lung cancer (SCLC). Subsequently, pulmonary neuroendocrine cells (PNECs) were identified by using pseudo-time series analysis as cell clusters with carcinogenic potential. We categorized FBs into four groups according to their cellular metabolism, and then analyzed the cellular communication between FBs and PNECs, as well as changes in intracellular pathways of PNECs. Additionally, we examined the characteristic genome of FBs which is significantly associated with PF and investigated the impact of FBs on immune cells in the PF microenvironment. Finally, we explored strategies for preventing the progression from PF to lung cancer. RESULTS: The genetic features of cells with carcinogenic potential in PF tissues were revealed, characterized by upregulation of Achaete-Scute Family BHLH Transcription Factor 1 (ASCL1), Homeobox B2 (HOXB2), Teashirt Zinc Finger Homeobox 2 (TSHZ2), Insulinoma-associated 1 (INSM1), and reduced activity of RE1 Silencing Transcription Factor (REST). FBs characterized by high glycolysis and low tricarboxylic acid (TCA) cycling played a key role in the progression of PF. The microenvironment of PF resembles the tumor microenvironment, providing a conducive immunosuppressive environment for the occurrence of cancer cells. In dendritic cells, rs9265808 is a susceptibility locus for progression from pulmonary fibrosis to lung cancer, mutations at this locus increase the expression of Complement Factor B (CFB), and excessive activation of the complement pathway is a crucial factor leading to lung cancer development in patients with pulmonary fibrosis. Ensuring adequate nutritional supply and physical function is one of the effective measures to prevent progression from pulmonary fibrosis to lung cancer. CONCLUSION: CFB promotes lung cancer occurrence by inducing the accumulation and polarization of a large number of monocytes/macrophages in the lungs, driving disease progression by reducing the physical fitness of patients with pulmonary fibrosis.

7.
J Vasc Access ; : 11297298241263891, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097784

ABSTRACT

The total occlusion of radial artery is a contraindication for reintervention and further usage. In this study, we report successful revascularization with creation of radiocephalic fistula from post-procedural chronically-occluded radial artery. The completely occluded radial artery was recanalized through ultrasound guided balloon angioplasty. A traditional radiocephalic fistula was created subsequently by using the recanalized radial artery for hemodialysis therapy. Though the fistula was failed at the 6 weeks caused by the juxta anastomotic stenosis, the further ultrasound guided percutaneous transluminal angioplasty restored the blood, and the hemodialysis therapy lasts for more than 1 year so far. It's feasible to create radiocephalic fistula based on the recanalized radial artery and maintain long-term hemodialysis therapy.

8.
J Clin Med ; 13(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39124761

ABSTRACT

Background: There is still no consensus about the coronavirus disease 2019 (COVID-19) vaccine-associated glomerular disease (CVAGD). Given the large number of vaccinations administered and the variations in glomerulopathy observed across different countries and regional environments, CVAGD remains an important area of concern. Aim of study: We aimed to elucidate the findings of CVAGD within a Taiwanese cohort using biopsy data. Additionally, we endeavored to clarify the presentation of CVAGD. Methods: We collected data from patients who underwent renal biopsy from June 2021 to October 2022 at Taichung Veterans General Hospital. Two independent nephrologists meticulously reviewed the charts to exclude cases unrelated to vaccination. Results: Initially, a total of 286 patients underwent renal biopsy at our institute. Ultimately, we identified 14 patients with highly suspected CVAGD. All 14 patients exhibited proteinuria and hematuria. The urinary protein-to-creatinine ratio was elevated (median of 2012.1 mg/g; interquartile range (IQR) 25%-IQR 75%: 941.85-3884.1 mg/g) with a median serum creatinine level of 1.71 mg/dL (0.79-5.35). The majority of CVAGD cases were diagnosed as immunoglobulin A (IgA) nephropathy (n = 5, 35.7%), followed by antineutrophil cytoplasmic antibody (ANCA)-related rapidly progressive glomerulonephritis (RPGN) (n = 4, 28.6%). There were only three cases of minimal change disease each: one case of focal segmental glomerulosclerosis, one of membranous glomerulonephritis, and one of lupus nephritis. The culprit of COVID-19 vaccinations was 35.7% (n = 5) of Oxford-AstraZeneca (ChAdOx1-S), 42.9% (n = 6) of Moderna, and 21.4% (n = 3) of BNT162b2. Most patients experienced improvements in renal function. Only two cases of P-ANCA RPGN and one case of IgA nephropathy did not recover. Eighty percent of IgA nephropathy cases had favorable outcomes, but none of the patients with P-ANCA RPGN achieved full recovery. Conclusions: IgA nephropathy and ANCA-related RPGN were the most common CVAGD, and all types of COVID-19 vaccines posed a risk for CVAGD. However, further studies are required to confirm causality.

9.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125012

ABSTRACT

Since 2019, COVID-19 has been raging around the world. Respiratory viral infectious diseases such as influenza and respiratory syncytial virus (RSV) infection are also prevalent, with influenza having the ability to cause seasonal pandemics. While vaccines and antiviral drugs are available to prevent and treat disease, herbal extracts would be another option. This study investigated the inhibitory effects of extracts of Echinacea purpurea (EP) and Ganoderma lucidum (G. lucidum) and the advanced G. lucidum drink (AG) on influenza A/B viruses. To determine whether EP and G. lucidum extracts enhance cell immunity and thus prevent virus infection or act to directly suppress viruses, cell survival and hemagglutination (HA) assays were used in this study. Cells were treated with samples at different concentrations (each sample concentration was tested from the highest non-cytotoxic concentration) and incubated with influenza A/B for 24 h, with the results showing that both G. lucidum and EP extracts and mixtures exhibited the ability to enhance cell survival against viruses. In the HA assay, AG and EP extract showed good inhibitory effect on influenza A/B viruses. All of the samples demonstrated an improvement of the mitochondrial membrane potential and improved resistance to influenza A/B virus infection. EP and G. lucidum extracts at noncytotoxic concentrations increased cell viability, but only AG and EP extract directly decreased influenza virus titers. In conclusion, results indicate the ability of EP and G. lucidum extract to prevent viruses from entering cells by improving cell viability and mitochondrial dysfunction and EP extract showed direct inhibition on viruses and prevented viral infection at post-infection strategy.


Subject(s)
Antiviral Agents , Cell Survival , Echinacea , Influenza A virus , Influenza B virus , Influenza, Human , Plant Extracts , Reishi , Reishi/chemistry , Influenza B virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Echinacea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Humans , Cell Survival/drug effects , Influenza, Human/drug therapy , Influenza, Human/virology , Influenza A virus/drug effects , Animals , Madin Darby Canine Kidney Cells , Dogs
10.
Front Genet ; 15: 1406231, 2024.
Article in English | MEDLINE | ID: mdl-39119578

ABSTRACT

Background: Significant evidence has been documented regarding the intricate connection between the development of anal fistula (AF) and the composition of Body Mass Index (BMI). Nevertheless, due to the inherent limitations of reverse causality and confounders inherent in observational studies, this relationship remains unclarified. Our study aims to reveal the causal impact between BMI and AF, as well as identify its associated risk factors, thereby providing a more comprehensive understanding of this complex interaction. Methods: Single nucleotide polymorphisms (SNPs) identified through genome-wide association study (GWAS) databases were used as instrumental variables for analysis. BMI served as the exposure variable, with six pooled GWAS datasets included. AF was the outcome variable. The Inverse Variance Weighted (IVW) method was used as the primary analytical technique, with MR-Egger regression, Weighted Median (WME) estimation, and Multiplicity Residual Sum and Outlier (MR-PRESSO) tests serving as secondary validations of the IVW results. Odds ratios (OR) were utilized as indicators to evaluate the causal relationship between BMI and AF. Results: A total of 738 SNPs strongly associated with the exposure were identified as instrumental variables. The IVW results demonstrated a positive correlation between BMI and the risk of AF. The MR-Egger analysis yielded p-values greater than 0.05, indicating no pleiotropic effects among the selected SNPs. Cochran's Q test also resulted in p-values greater than 0.05, suggesting no significant heterogeneity among the instrumental variables. The MR-PRESSO analysis revealed no horizontal pleiotropy or outliers potentially violating the causal assumption (p > 0.05). Conclusion: High BMI is positively associated with the risk of AF, and correcting BMI levels may have a preventive effect on the incidence of AF.

11.
BMC Urol ; 24(1): 167, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39112963

ABSTRACT

BACKGROUND: At present, the guidelines for urology recommend percutaneous nephrolithotomy (PCNL) as the preferred treatment for staghorn renal calculi (SRC). However, for complete SRC, it has been questioned by clinicians and patients due to high residual stone rate, complications, repeated hospitalizations and high treatment cost. Anatrophic nephrolithotomy (ANL) is a traditional and classic method for the treatment of SRC. Due to its high trauma and high technical requirements, it is difficult to carry out in primary hospitals, and gradually replaced by PCNL. The purpose of this study is to compare the efficacy of PCNL and ANL in the treatment of complete SRC. METHODS: Overall, 238 patients with complete SRC were divided into mini-PCNL in lateral supine position group, (n = 190) and ANL group (n = 94) according to treatment for a retrospective cohort study. The calculi parameters, renal function index, comorbidities of calculi, surgical complications, length and frequency of hospitalization, treatment costs, results of postoperative satisfaction survey were compared between the two groups. RESULTS: The risk of the residual stone rate after mini-PCNL in lateral supine position was 239 times (OR = 238.667, P < 0.0001), the number of residual stone 1.3 times (OR = 1.326, P < 0.0001), the amount of residual stone 2.2 times (OR = 2.224, P < 0.0001) that of ANL. The risk of the cost of initial treatment after mini-PCNL in lateral supine position was 3.3 times (OR = 3.273, P < 0.0001), the total cost of treatment 4 times (OR = 4.051, P < 0.0001), the total length of hospital stays 1.4 times (OR = 1.44, P < 0.0001) that of ANL, the incidence of postoperative renal atrophy was 2.2 times (OR = 2.171, P = 0.008) higher in the ANL than in the mini-PCNL in lateral supine position. Glomerular filtration rate (GFR) reduction after ANL was 1.4 times (OR = 1.381, P = 0.037) greater than that after mini-PCNL in lateral supine position at 24-month follow-up. The risk of the overall satisfaction of ANL was 58 times (OR = 57.857, P < 0.0001) higher than that of mini-PCNL in lateral supine position, the number of branches of staghorn greater than 8 is a high risk factor for the occurrence of residual stone after mini-PCNL in lateral supine position (OR = 353.137, P < 0.0001). CONCLUSION: Although the risk of renal atrophy and decreased GFR after ANL is higher than that of mini-PCNL in lateral supine position, the efficacy of traditional ANL in the treatment of complete SRC was generally superior to that of mini-PCNL in lateral supine position. Moreover, number of branches of staghorn greater than 8 are the preferred ANL for complete SRC. TRIAL REGISTRATION: ChiCTR2100047462. The trial was registered in the Chinese Clinical Trial Registry; registration date: 19/06/2021.


Subject(s)
Nephrolithotomy, Percutaneous , Patient Positioning , Staghorn Calculi , Humans , Male , Female , Nephrolithotomy, Percutaneous/methods , Middle Aged , Staghorn Calculi/surgery , Retrospective Studies , Supine Position , Adult , Patient Positioning/methods , Treatment Outcome , Cohort Studies , Aged
12.
J Transl Med ; 22(1): 745, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113057

ABSTRACT

BACKGROUND: Human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC), which accounts for approximately one-fifth of all BCs, are highly invasive with a high rate of recurrence and a poor prognosis. Several studies have shown that growth factor receptor-bound protein 7 (GRB7) might be a potential therapeutic target for tumor diagnosis and prognosis. Nevertheless, the role of GRB7 in HER2+ BC and its underlying mechanisms have not been fully elucidated. The aim of this study was to investigate the biological function and regulatory mechanism of GRB7 in HER2+ BC. METHODS: Bioinformatics analysis was performed using the TCGA, GEO and CancerSEA databases to evaluate the clinical significance of GRB7. RT quantitative PCR, western blot and immunofluorescence were conducted to assess the expression of GRB7 in BC cell lines and tissues. MTT, EdU, colony formation, wound healing, transwell, and xenograft assays were adopted to explore the biological function of GRB7 in HER2+ BC. RNA sequencing was performed to analyze the signaling pathways associated with GRB7 in SK-BR-3 cells after the cells were transfected with GRB7 siRNA. Chromatin immunoprecipitation analysis (ChIP) and luciferase reporter assay were employed to elucidate the potential molecular regulatory mechanisms of GRB7 in HER2+ BC. RESULTS: GRB7 was markedly upregulated and associated with poor prognosis in BC, especially in HER2+ BC. Overexpression of GRB7 increased the proliferation, migration, invasion, and colony formation of HER2+ BC cells, while depletion of GRB7 had the opposite effects in HER2+ BC cells and inhibited xenograft growth. ChIP-PCR and luciferase reporter assay revealed that TCF12 directly bound to the promoter of the GRB7 gene to promote its transcription. GRB7 facilitated HER2+ BC epithelial-mesenchymal transition (EMT) progression by interacting with Notch1 to activate Wnt/ß-catenin pathways and other signaling (i.e., AKT, ERK). Moreover, forced GRB7 overexpression activated Wnt/ß-catenin to promote EMT progression, and partially rescued the inhibition of HER2+ BC proliferation, migration and invasion induced by TCF12 silencing. CONCLUSIONS: Our work elucidates the oncogenic role of GRB7 in HER2+ BC, which could serve as a prognostic indicator and promising therapeutic target.


Subject(s)
Breast Neoplasms , Cell Proliferation , Disease Progression , GRB7 Adaptor Protein , Gene Expression Regulation, Neoplastic , Receptor, ErbB-2 , Receptor, Notch1 , Signal Transduction , Humans , GRB7 Adaptor Protein/metabolism , GRB7 Adaptor Protein/genetics , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Animals , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Mice, Nude , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C , Basic Helix-Loop-Helix Transcription Factors
13.
Cogn Neurodyn ; 18(4): 2003-2013, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104674

ABSTRACT

The role of network metrics in exploring brain networks of mental illness is crucial. This study focuses on quantifying a node controllability index (CA-scores) and developing a novel framework for studying the dysfunction of attention deficit hyperactivity disorder (ADHD) brains. By analyzing fMRI data from 143 healthy controls and 102 ADHD patients, the controllability metric reveals distinct differences in nodes (brain regions) and subsystems (functional modules). There are significantly atypical CA-scores in the Rolandic operculum, superior medial orbitofrontal cortex, insula, posterior cingulate gyrus, supramarginal gyrus, angular gyrus, precuneus, heschl gyrus, and superior temporal gyrus of ADHD patients. A comparison with measures of connection strength, eigenvector centrality, and topology entropy suggests that the controllability index may be more effective in identifying abnormal regions in ADHD brains. Furthermore, our controllability index could be extended to investigate functional networks associated with other psychiatric disorders. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-023-10063-z.

14.
Plant Phenomics ; 6: 0225, 2024.
Article in English | MEDLINE | ID: mdl-39108845

ABSTRACT

Marked variations in the 3-dimensional (3D) shape of corn leaves can be discerned as a function of various influences, including genetics, environmental factors, and the management of cultivation processes. However, the causes of these variations remain unclear, primarily due to the absence of quantitative methods to describe the 3D spatial morphology of leaves. To address this issue, this study acquired 3D digitized data of ear-position leaves from 478 corn inbred lines during the grain-filling stage. We propose quantitative calculation methods for 13 3D leaf shape features, such as the leaf length, 3D leaf area, leaf inclination angle, blade-included angle, blade self-twisting, blade planarity, and margin amplitude. Correlation analysis, cluster analysis, and heritability analysis were conducted among the 13 leaf traits. Leaf morphology differences among subpopulations of the inbred lines were also analyzed. The results revealed that the 3D leaf traits are capable of revealing the morphological differences among different leaf surfaces, and the genetic analysis revealed that 84.62% of the 3D phenotypic traits of ear-position leaves had a heritability greater than 0.3. However, the majority of 3D leaf shape traits were strongly affected by environmental conditions. Overall, this study quantitatively investigated 3D leaf shape in corn, providing a reliable basis for further research on the genetic regulation of corn leaf morphology and advancing the understanding of the complex interplay among crop genetics, phenotypes, and the environment.

16.
Nat Commun ; 15(1): 6626, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103353

ABSTRACT

N-Myc is a key driver of neuroblastoma and neuroendocrine prostate cancer (NEPC). One potential way to circumvent the challenge of undruggable N-Myc is to target the protein homeostasis (proteostasis) system that maintains N-Myc levels. Here, we identify heat shock protein 70 (HSP70) as a top partner of N-Myc, which binds a conserved "SELILKR" motif and prevents the access of E3 ubiquitin ligase, STIP1 homology and U-box containing protein 1 (STUB1), possibly through steric hindrance. When HSP70's dwell time on N-Myc is increased by treatment with the HSP70 allosteric inhibitor, STUB1 is in close proximity with N-Myc and becomes functional to promote N-Myc ubiquitination on the K416 and K419 sites and forms polyubiquitination chains linked by the K11 and K63 sites. Notably, HSP70 inhibition significantly suppressed NEPC tumor growth, increased the efficacy of aurora kinase A (AURKA) inhibitors, and limited the expression of neuroendocrine-related pathways.


Subject(s)
HSP70 Heat-Shock Proteins , Prostatic Neoplasms , Proteostasis , Ubiquitin-Protein Ligases , Ubiquitination , Male , Humans , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , HSP70 Heat-Shock Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Cell Line, Tumor , Animals , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Aurora Kinase A/antagonists & inhibitors , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Mice , Carcinoma, Neuroendocrine/metabolism , Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/pathology , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology
17.
J Coll Physicians Surg Pak ; 34(8): 948-955, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39113515

ABSTRACT

Spinal muscular atrophy (SMA) is a prevalent paediatric neuromuscular disorder characterised by muscle weakness and atrophy resulting from degeneration of spinal cord anterior horn α motor neurons. Gene therapy formulations exhibit varying benefits and limitations, driving the need for patient-friendly treatment options tailored to specific populations. The objective of this meta-analysis was to assess the effectiveness of gene therapy for motor function in children with SMA. The analysis encompassed a total of 719 participants from six randomised controlled trials (RCTs) conducted between 2017 and 2023. Among the studies, one demonstrated a significant and large standardised effect size (Cohen's d) favouring nusinersen in terms of Hammersmith Functional Motor Scale - Expanded (HFMSE) (d = 0.97) and revised upper limb module (RULM) (d = 0.96). Additionally, another study showed a moderate standardised effect size (Cohen's d) in favour of nusinersen concerning Hammersmith Infant Neurological Examination-Section 2 (HINE-2) (d = 0.48). However, it is important to note that further research with a longer duration of observation is required to strengthen the evidence. Key Words: Spinal muscular atrophy, Nusinersen, Risdiplam, Motor function, Cohen's d.


Subject(s)
Oligonucleotides , Spinal Muscular Atrophies of Childhood , Humans , Oligonucleotides/therapeutic use , Spinal Muscular Atrophies of Childhood/drug therapy , Spinal Muscular Atrophies of Childhood/physiopathology , Genetic Therapy , Treatment Outcome , Randomized Controlled Trials as Topic , Child , Azo Compounds , Pyrimidines
18.
ACS Nano ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115423

ABSTRACT

Promotion of oxygen reduction reaction (ORR) kinetics, to a large extent, depends on the rational modulation of the electronic structure and mass diffusion of electrocatalysts. Herein, a ferrocene (Fc)-assisted strategy is developed to prepare Fc-trapped ZnMo-hybrid zeolitic imidazolate framework (Fc@ZnMo-HZIF-50) and the derived Fe single atom coupling with MoC nanoparticles, coembedded in hierarchically porous N-doped carbon cubes (MoC@FeNC-50). The introduced Fc is utilized not only as an iron source for single atoms but also as a morphology regulator for generating a hierarchically porous structure. The redistribution of electrons between Fe single atoms and MoC nanoparticles effectively promotes the adsorption of O2 and the formation of *OOH intermediates during the ORR process. Along with a 3D hierarchically porous architecture for enhanced mass transport, the as-fabricated MoC@FeNC-50 presents excellent activity (E1/2 = 0.83 V) and durability (only 9.5% decay in current after 40000 s). This work could inspire valuable insights into the construction of efficient electrocatalysts through electron configuration and kinetics engineering.

19.
Sci Rep ; 14(1): 15478, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38969765

ABSTRACT

Colorectal cancer (CRC) is a common digestive system tumor with high morbidity and mortality worldwide. At present, the use of computer-assisted colonoscopy technology to detect polyps is relatively mature, but it still faces some challenges, such as missed or false detection of polyps. Therefore, how to improve the detection rate of polyps more accurately is the key to colonoscopy. To solve this problem, this paper proposes an improved YOLOv5-based cancer polyp detection method for colorectal cancer. The method is designed with a new structure called P-C3 incorporated into the backbone and neck network of the model to enhance the expression of features. In addition, a contextual feature augmentation module was introduced to the bottom of the backbone network to increase the receptive field for multi-scale feature information and to focus on polyp features by coordinate attention mechanism. The experimental results show that compared with some traditional target detection algorithms, the model proposed in this paper has significant advantages for the detection accuracy of polyp, especially in the recall rate, which largely solves the problem of missed detection of polyps. This study will contribute to improve the polyp/adenoma detection rate of endoscopists in the process of colonoscopy, and also has important significance for the development of clinical work.


Subject(s)
Algorithms , Colonic Polyps , Colonoscopy , Colorectal Neoplasms , Humans , Colonoscopy/methods , Colonic Polyps/diagnosis , Colonic Polyps/diagnostic imaging , Colonic Polyps/pathology , Colorectal Neoplasms/diagnosis , Neural Networks, Computer , Semantics , Image Interpretation, Computer-Assisted/methods
20.
Bioact Mater ; 40: 227-243, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38973993

ABSTRACT

Limited cells and factors, inadequate mechanical properties, and necrosis of defects center have hindered the wide clinical application of bone-tissue engineering scaffolds. Herein, we construct a self-oxygenated 3D printed bioactive hydrogel scaffold by integrating oxygen-generating nanoparticles and hybrid double network hydrogel structure. The hydrogel scaffold possesses the characteristics of extracellular matrix; Meanwhile, the fabricated hybrid double network structure by polyacrylamide and CaCl2-crosslinked sodium carboxymethylcellulose endows the hydrogel favorable compressive strength and 3D printability. Furthermore, the O2 generated by CaO2 nanoparticles encapsulated in ZIF-8 releases steadily and sustainably because of the well-developed microporous structure of ZIF-8, which can significantly promote cell viability and proliferation in vitro, as well as angiogenesis and osteogenic differentiation with the assistance of Zn2+. More significantly, the synergy of O2 and 3D printed pore structure can prevent necrosis of defects center and facilitate cell infiltration by providing cells the nutrients and space they need, which can further induce vascular network ingrowth and accelerate bone regeneration in all areas of the defect in vivo. Overall, this work provides a new avenue for preparing cell/factor-free bone-tissue engineered scaffolds that possess great potential for tissue regeneration and clinical alternative.

SELECTION OF CITATIONS
SEARCH DETAIL