Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
RSC Adv ; 8(16): 8537-8543, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539857

ABSTRACT

In this paper, we propose a new, abundant, cost-effective, non-toxic, and environmentally benign iron-copper redox flow battery (Fe/Cu RFB), which employs Fe2+/Fe3+ and Cu+/Cu0 as the positive and negative electrolytes, respectively. The effect of graphite felt (GF) electrode modification and addition of Bi3+ into the electrolytes on the performance of the Fe/Cu RFB were investigated. It was found that the cell containing Bi3+ in the electrolytes revealed higher coulombic efficiency (89.18%) and energy efficiency (35.24%) than the cell without Bi3+ (CE = 84.10% and EE = 34.43%) at 20 mA cm-2. This is because after adding Bi3+, Cu metal precipitation was not observed on the electrode surface, which indicates that the deposition process was potentially reversible on the electrode material, thus leading to enhanced performance of the battery. Furthermore, the efficiencies of the battery are stable over 10 cycles, which demonstrates that Fe/Cu RFB exhibits good stability on the microwave heat treated GF plus one layer microwave heat treated carbon paper (HT-GF + HT-CP) electrode after adding Bi3+ into the electrolytes.

2.
Polymers (Basel) ; 9(9)2017 Sep 07.
Article in English | MEDLINE | ID: mdl-30965733

ABSTRACT

We report the responsive fluorescence chemosensory phenomena of a carbazole-functionalized crosslinked polymer (PCaT) with pendent terpyridine (tpy) groups as receptors of metal ions. The polymer was synthesized using Heck polymerization between 3,6-dibromide groups in a carbazole-based polymer (PC2Br) and divinyl tpy monomer. The effects of the polymeric structure on the optical and chemosensory properties of the PCaT were compared with those of a carbazole-tpy alternating conjugated polymer (PCT). Photoluminescence titrations demonstrated that the PCaT and PCT had the high sensing ability toward Fe3+ ions, with Stern⁻Volmer constants of 8.10 × 104 and 6.68 × 104 M-1, respectively. The limit of detection (LOD) toward Fe3+ of the PCaT and PCT was estimated to be 1.31 × 10-6 and 1.81 × 10-6 M, respectively, and the superior LOD of the PCaT was ascribed to its lowly crosslinked structure. The fluorescence of the solutions of these polymers that were quenched by Fe3+ ions recovered when trace CN- anions were added because of the high stability constant of the CN-⁻Fe3+ complex. Micellar aggregates with a mean diameter of approximately 239.5 nm were formed by dissolving the PCaT in tetrahydrofuran (THF) solution. Our results suggest that the PCaT is a promising material for chemosensory applications.

3.
J Agric Food Chem ; 63(32): 7211-8, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26260702

ABSTRACT

New cembranoids 4-carbomethoxyl-10-epigyrosanoldie E (1), 7-acetylsinumaximol B (2), diepoxycembrene B (6), dihydromanaarenolide I (8), and isosinulaflexiolide K (9), along with 11 known related metabolites, were isolated from cultured soft corals Sinularia sandensis and Sinularia flexibilis. The structures were elucidated by means of infrared, mass spectrometry, and nuclear magnetic resonance techniques, and the absolute configurations of 1, 4, 9, and 15 were further confirmed by single-crystal X-ray diffraction analysis. The absolute configurations of these coral metabolites and comparison with known analogues showed that one hypothesis (that cembrane diterpenes possessing an absolute configuration of an isopropyl group at C1 obtained from Alcyonacean soft corals belong to the α series, whereas analogues isolated from Gorgonacean corals belong to the ß series) is not applicable for a small number of cembranoids. An in vitro anti-inflammatory study using LPS-stimulated macrophage-like cell line RAW 264.7 revealed that compounds 9-14 significantly suppressed the accumulation of pro-inflammatory proteins, iNOS and COX-2. Structure-activity relationship analysis indicated that cembrane-type compounds with one seven-membered lactone moiety at C-1 are potential anti-inflammatory agents. This is the first culture system in the world that has successfully been used to farm S. sandensis.


Subject(s)
Anthozoa/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/immunology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/immunology , Mice , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/immunology , RAW 264.7 Cells , Structure-Activity Relationship
4.
J Hazard Mater ; 175(1-3): 850-7, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-19932556

ABSTRACT

Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L(-1) sorbed 82% of RB5 (100 mg L(-1)) within 4h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH(0) of 7, current density of 277 A m(-2), and NaCl of 1 g L(-1). However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L(-1) effectively removed COD and toxicity of electrocoagulation-treated solution within 4h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30s at power of 800 W, GAC/water ratio of 20 g L(-1), and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A(265) (benzene-related groups) and toxicity slightly decreased after the 6th cycle.


Subject(s)
Charcoal/chemistry , Electrocoagulation , Microwaves , Naphthalenesulfonates/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Aliivibrio fischeri/metabolism , Bioreactors , Electrochemistry/methods , Hydrogen-Ion Concentration , Industrial Waste , Models, Chemical , Time Factors , Water Pollutants, Chemical/chemistry
5.
Chemosphere ; 72(2): 299-305, 2008 May.
Article in English | MEDLINE | ID: mdl-18359062

ABSTRACT

The combined electrochemical oxidation-solar-light/immobilized TiO2 film process was conducted to degrade an azo dye, Reactive Black 5 (RB5). The toxicity was also monitored by the Vibrio fischeri light inhibition test. The electrochemical oxidation rapidly decolorized RB5 (55, 110 microM) with a supporting electrolyte of 2 gl(-1) NaCl at current density 277Am(-2) and pH 4. However, TOC mineralization and A(310) removal were low. Additionally, the treated solution showed high biotoxicity. RB5 at 110 microM significantly retarded the de-colorization efficiency by using the solar-light/immobilized TiO2 film process. The combined electrochemical oxidation-solar-light/immobilized TiO2 process effectively increased the removal of color, A(310), and TOC. The toxicity was also significantly reduced after 3h of solar irradiation. The results indicated that the low-cost combined process is a potential technique for rapid treatment of RB5.


Subject(s)
Naphthalenesulfonates/chemistry , Naphthalenesulfonates/toxicity , Sunlight , Titanium/chemistry , Aliivibrio fischeri/drug effects , Electrochemistry , Photochemistry , Photolysis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL