Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 203
Filter
1.
Gene ; 927: 148739, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955307

ABSTRACT

Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.


Subject(s)
Adenocarcinoma , Basic Helix-Loop-Helix Transcription Factors , Cell Proliferation , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms , RNA, Transfer , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Cell Line, Tumor , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation/genetics , Mice , Animals , Cell Movement/genetics , Apoptosis/genetics , Disease Progression , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Prognosis , Male , Female , Mice, Nude
2.
Int J Hyperthermia ; 41(1): 2373319, 2024.
Article in English | MEDLINE | ID: mdl-38955354

ABSTRACT

BACKGROUND: Cryoablation (Cryo) is a minimally invasive treatment for tumors. Cryo can activate the body's immune response, although it is typically weak. The immune response induced by Cryo in hepatocellular carcinoma (HCC) is poorly understood. PD-1 and CTLA-4 monoclonal antibodies are immune checkpoint inhibitors used in immunotherapy for tumors. The combined use of these antibodies with Cryo may enhance the immune effect. METHODS: A Balb/c mouse model of HCC was established and treated with Cryo, immune checkpoint blockade (ICB), or Cryo + ICB (combination therapy). The growth trend of right untreated tumors and survival time of mice were determined. The expression of apoptosis-related proteins was detected by Western blot (WB) assay. The percentages of immune cells and immunosuppressive cells were analyzed by flow cytometry. The numbers of infiltrating T lymphocytes were checked by immunohistochemistry, and the levels of T-cell-associated cytokines were detected by Quantitative real-time Polymerase Chain Reaction (qRT-PCR) assays and Enzyme-Linked Immunosorbent Assays (ELISA) assays. RESULTS: Cryo + ICB inhibited the growth of right untreated tumors, promoted tumor cell apoptosis, and prolonged the survival time of mice. Local T-cell infiltration in right tumor tissues increased after the combination therapy, while the number of immunosuppressive cells was significantly reduced. In addition, the combination therapy may induce the production of multiple Th1-type cytokines but reduce the production of Th2-type cytokines. CONCLUSIONS: Cryo can activate CD8+ and CD4+ T-cell immune responses. Cryo + ICB can relieve the immunosuppressive tumor microenvironment and shift the Th1/Th2 balance toward Th1 dominance, further enhancing the Cryo-induced T-cell immune response and resulting in a stronger antitumor immune response.


Subject(s)
Carcinoma, Hepatocellular , Cryosurgery , Immune Checkpoint Inhibitors , Liver Neoplasms , Mice, Inbred BALB C , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Mice , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Cryosurgery/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Disease Models, Animal , Cell Line, Tumor
3.
Wideochir Inne Tech Maloinwazyjne ; 19(2): 211-222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38973786

ABSTRACT

Introduction: The aim of the article was too investigate and compare the feasibility, safety, and early postoperative recovery associated with laparoscopic partial splenectomy (LPS) and open partial splenectomy (OPS) in patients with benign splenic tumours and traumatic splenic rupture. Material and methods: A retrospective analysis was conducted on clinical data from 110 patients undergoing splenic resection at our hospital between March 2019 and May 2022. Among them, 35 patients underwent OPS, 25 underwent LPS for traumatic splenic rupture, while 50 patients with benign splenic tumours underwent either OPS (n = 20) or LPS (n = 30). Preoperative, intraoperative, and postoperative data were collected and compared. Statistical analysis was conducted using SPSS software. Results: There was no significant difference in the general data between the 2 groups of patients with benign splenic tumours and those with splenic trauma. Among patients with traumatic splenic rupture, the OPS group had a shorter operation time (p < 0.05). Regardless of whether they had traumatic splenic rupture or benign splenic tumours, the LPS group required less postoperative analgesia and had a shorter defecation recovery time (p < 0.05). Additionally, the LPS group displayed lower white blood cell count, white blood cell/lymphocyte ratio (WLR), neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), C-reactive protein (CRP), calcitonin (PCT), and interleukin-6 (IL-6) than the OPS group on the first and third days post-surgery (p < 0.05). Conclusions: In comparison to OPS, LPS presents significant advantages, including minimal surgical trauma, a reduced early postoperative inflammatory response, milder wound pain, and a faster recovery of gastrointestinal function.

4.
Basic Clin Pharmacol Toxicol ; 135(2): 148-163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38887973

ABSTRACT

Human pregnane X receptor (PXR) is critical for regulating the expression of key drug-metabolizing enzymes such as CYP3A and CYP2C. Our recent study revealed that treatment with rodent-specific PXR agonist pregnenolone-16α-carbonitrile (PCN) significantly induced hepatomegaly and promoted liver regeneration after two-thirds partial hepatectomy (PHx) in mice. However, it remains unclear whether PXR activation induces hepatomegaly and liver regeneration and simultaneously promotes metabolic function of the liver. Here, we investigated the metabolism activity of CYP1A2, CYP3A1/2 and CYP2C6/11 during PXR activation-induced liver enlargement and regeneration in rats after cocktail dosing of CYP probe drugs. For PCN-induced hepatomegaly, a notable increase in the metabolic activity of CYP3A1/2 and CYP2C6/11, as evidenced by the plasma exposure of probe substrates and the AUC ratios of the characteristic metabolites to its corresponding probe substrates. The metabolic activity of CYP1A2, CYP3A1/2 and CYP2C6/11 decreased significantly after PHx. However, PCN treatment obviously enhanced the metabolic activity of CYP2C6/11 and CYP3A1/2 in PHx rats. Furthermore, the protein expression levels of CYP3A1/2 and CYP2C6/11 in liver were up-regulated. Taken together, this study demonstrates that PXR activation not only induces hepatomegaly and liver regeneration in rats, but also promotes the protein expression and metabolic activity of the PXR downstream metabolizing enzymes such as CYP3A1/2 and CYP2C6/11 in the body.


Subject(s)
Cytochrome P-450 CYP3A , Hepatomegaly , Liver Regeneration , Liver , Pregnane X Receptor , Pregnenolone Carbonitrile , Animals , Pregnane X Receptor/metabolism , Pregnane X Receptor/genetics , Liver Regeneration/drug effects , Male , Cytochrome P-450 CYP3A/metabolism , Pregnenolone Carbonitrile/pharmacology , Liver/metabolism , Liver/enzymology , Liver/drug effects , Rats , Hepatomegaly/metabolism , Hepatomegaly/pathology , Aryl Hydrocarbon Hydroxylases/metabolism , Aryl Hydrocarbon Hydroxylases/genetics , Cytochrome P450 Family 2/metabolism , Cytochrome P450 Family 2/genetics , Rats, Sprague-Dawley , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/genetics , Steroid 16-alpha-Hydroxylase/metabolism , Steroid 16-alpha-Hydroxylase/genetics , Steroid 12-alpha-Hydroxylase/metabolism , Steroid 12-alpha-Hydroxylase/genetics , Hepatectomy
5.
Arch Toxicol ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896176

ABSTRACT

Ochratoxin A (OTA), a secondary fungal metabolite known for its nephrotoxic effects, is prevalent in various feeds and food items. Our recent study suggests that OTA-induced nephrotoxicity is linked to the Sigma-1 receptor (Sig-1R)-mediated mitochondrial pathway apoptosis in human proximal tubule epithelial-originated kidney-2 (HK-2) cells. However, the contribution of Sig-1R to OTA-induced nephrotoxicity involving other forms of regulated cell death, such as ferroptosis, remains unexplored. In this investigation, cell viability, malondialdehyde (MDA) levels, glutathione (GSH) levels, and protein expressions in HK-2 cells treated with OTA and/or Ferrostatin-1/blarcamesine hydrochloride/BD1063 dihydrochloride were assessed. The results indicate that a 24 h-treatment with 1 µM OTA significantly induces ferroptosis by inhibiting Sig-1R, subsequently promoting nuclear receptor coactivator 4 (NCOA4), long-chain fatty acid-CoA ligase 4 (ACSL4), arachidonate 5-lipoxygenase (ALOX5), autophagy protein 5 (ATG5), and ATG7, inhibiting ferritin heavy chain (FTH1), solute carrier family 7 member 11 (SLC7A11/xCT), glutathione peroxidase 4 (GPX4), peroxiredoxin 6 (PRDX6), and ferroptosis suppressor protein 1 (FSP1), reducing GSH levels, and increasing MDA levels (P < 0.05). In conclusion, OTA induces ferroptosis by inhibiting Sig-1R, subsequently promoting ferritinophagy, inhibiting GPX4/FSP1 antioxidant systems, reducing GSH levels, and ultimately increasing lipid peroxidation levels in vitro.

6.
Cancer Gene Ther ; 31(7): 1090-1102, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802551

ABSTRACT

The role of circular RNAs (circRNAs) in glucose metabolism in pancreatic duct adenocarcinoma (PDAC) remains elusive. Through RNA sequencing of cells cultured under conditions of glucose deprivation, we identified hsa_circ_0007590. Sanger sequencing and RNase R and Act D treatments were performed to confirm the circular RNA features of hsa_circ_0007590. RNA in situ hybridization (RNA-ISH) and quantitative reverse transcription PCR (qRT-PCR) were used to estimate hsa_circ_0007590 expression in PDAC clinical specimens and cell lines. hsa_circ_0007590 expression was higher in PDAC patients and closely related to the clinicopathological characteristics of the disease. Cytoplasm‒nuclear fractionation and FISH assays demonstrated that hsa_circ_0007590 was located in the nucleus. Gain-of-function and loss-of-function assays were performed to assess the biological behaviors of PDAC cells. Seahorse XF assays were performed to validate the Warburg effect. hsa_circ_0007590 facilitated the proliferation, migration, and invasion of PDAC cells and promoted the Warburg effect. Mass spectrometry, RNA pulldown, RNA immunoprecipitation (RIP), RNA m6A quantification, m6A dot blot, MeRIP, and Western blotting were conducted to investigate the detailed mechanism through which hsa_circ_0007590 produces these effects. Mechanistically, hsa_circ_0007590 targeted PTBP1 and increased the expression of the m6A reader protein YTHDF2, leading to PTEN mRNA degradation and PI3K/AKT/mTOR pathway activation. Overall, hsa_circ_0007590, which targets PTBP1, reprograms glucose metabolism by attenuating the stability of m6A-modified PTEN mRNA and holds potential promise as a therapeutic target for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Glucose , Heterogeneous-Nuclear Ribonucleoproteins , PTEN Phosphohydrolase , Pancreatic Neoplasms , Polypyrimidine Tract-Binding Protein , RNA, Circular , Humans , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , RNA, Circular/genetics , RNA, Circular/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Glucose/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Mice , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , Female , Cell Line, Tumor , RNA Stability , Middle Aged
7.
J Environ Manage ; 360: 121193, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772238

ABSTRACT

Black soldier fly larvae (BSFL) (Hermetia illucens) are commonly used to treat organic waste. This work aims to evaluate the transformation effect, heavy metal migration, and alterations in the gut microbiota of BSFL in addition to treating landfill leachate (LL) with BSFL. We found that BSFL may grow in various landfill leachate concentrations without obvious toxicity and growth inhibition. In addition, the results indicated a significant increase in the content of ammonia nitrogen and the activity of urease and ß-glucosidase (ß-GC) in LL, increased from 2570.17 mg/L to 5853.67 mg/L, 1859.17 mg/(g·d) to 517,177.98 mg/(g·d), 313.73 µg/(g·h) to 441.91 µg/(g·h) respectively. Conversely, the content of total nitrogen (TN) and total organic carbon (TOC) decreased in LL, decreasing by 31.24% and 29.45% respectively. Heavy metals are accumulated in the leachate by the BSFL to differing degrees, the descending sequence of accumulation is Cd > As > Cu > Cr. As dropped by 26.0%, Cd increased by 22.6%, Cu reduced by 5.23%, and Cr increased by 317.1% in the remaining matrix. The concentration of heavy metals satisfies the organic fertilizers' limit index (NY/T1978). The diversity of intestinal microorganisms in BSFL decreased, from 2819 OTUs to 2338 OTUs, with Providencia and Morganella emerging as the core flora. The gene abundance of nitrogen metabolism in the microbiota increased significantly. The TOC, ß-GC, and Copper (Cu) content in BSFL correlated significantly with the gut microbiota. In Summary, this study revealed the treatment effect of BSFL on LL, the migration of heavy metals, and changes in the intestinal microorganisms of BSFL. The content of heavy metals in BSFL was found to be much lower than the upper limit of feed protein raw materials, demonstrating that BSFL is a sustainable method to treat LL.


Subject(s)
Diptera , Gastrointestinal Microbiome , Larva , Metals, Heavy , Water Pollutants, Chemical , Animals , Larva/growth & development , Gastrointestinal Microbiome/drug effects , Water Pollutants, Chemical/metabolism , Nitrogen/metabolism
8.
Environ Toxicol Pharmacol ; 108: 104468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759849

ABSTRACT

Chlorpyrifos, widely used for pest control, is known to have various harmful effects, although its toxic effects in macrophages and the mechanisms underlying its toxicity remain unclear. The present study investigated the toxic effects of chlorypyrifos in a macrophage cell line. Here, we found that chlorpyrifos induced cytotoxicity and genotoxicity in RAW264.7 macrophages. Moreover, chlorpyrifos induced intracellular ROS production, subsequently leading to lipid peroxidation. Chlorpyrifos reduced the activation of antioxidative enzymes including superoxide dismutase, catalase, and glutathione peroxidase. Chlorpyrifos upregulated HO-1 expression and activated the Keap1-Nrf2 pathway, as indicated by enhanced Nrf2 phosphorylation and Keap1 degradation. Chlorpyrifos exerted effects on the following in a dose-dependent manner: cytotoxicity, genotoxicity, lipid peroxidation, intracellular ROS production, antioxidative enzyme activity reduction, HO-1 expression, Nrf2 phosphorylation, and Keap1 degradation. Notably, N-acetyl-L-cysteine successfully inhibited chlorpyrifos-induced intracellular ROS generation, cytotoxicity, and genotoxicity. Thus, chlorpyrifos may induce cytotoxicity and genotoxicity by promoting intracellular ROS production and suppressing the antioxidative defense system activation in macrophages.


Subject(s)
Chlorpyrifos , Insecticides , Kelch-Like ECH-Associated Protein 1 , Macrophages , NF-E2-Related Factor 2 , Reactive Oxygen Species , Chlorpyrifos/toxicity , Animals , Mice , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Insecticides/toxicity , Cell Survival/drug effects , Antioxidants/pharmacology , Lipid Peroxidation/drug effects , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Superoxide Dismutase/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Oxidative Stress/drug effects , Membrane Proteins
9.
Environ Toxicol ; 39(7): 4022-4034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38622810

ABSTRACT

Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD. Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD.


Subject(s)
AMP-Activated Protein Kinases , Dopaminergic Neurons , Ghrelin , Mice, Inbred C57BL , Mitophagy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Kinases , Sirtuin 1 , Ubiquitin-Protein Ligases , Animals , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Sirtuin 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Protein Kinases/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Ghrelin/pharmacology , Male , Mitophagy/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Neuroprotective Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Organelle Biogenesis , Parkinson Disease/drug therapy , MPTP Poisoning/drug therapy , MPTP Poisoning/pathology
10.
Arch Toxicol ; 98(7): 2247-2259, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635053

ABSTRACT

3-Bromofluoranthene (3-BrFlu) is the secondary metabolite of fluoranthene, which is classified as a polycyclic aromatic hydrocarbon, through bromination and exists in the fine particulate matter of air pollutants. Endothelial dysfunction plays a critical role in the pathogenesis of cardiovascular and vascular diseases. Little is known about the molecular mechanism of 3-BrFlu on endothelial dysfunction in vivo and in vitro assay. In the present study, 3-BrFlu included concentration-dependent changes in ectopic angiogenesis of the sub-intestinal vein and dilation of the dorsal aorta in zebrafish. Disruption of vascular endothelial integrity and up-regulation of vascular endothelial permeability were also induced by 3-BrFlu in a concentration-dependent manner through pro-inflammatory responses in vascular endothelial cells, namely, SVEC4-10 cells. Generation of pro-inflammatory mediator PGE2 was induced by 3-BrFlu through COX2 expression. Expression of COX2 and generation of pro-inflammatory cytokines, including TNFα and IL-6, were induced by 3-BrFlu through phosphorylation of NF-κB p65, which was mediated by phosphorylation of MAPK, including p38 MAPK, ERK and JNK. Furthermore, generation of intracellular ROS was induced by 3-BrFlu, which is associated with the down-regulated activities of the antioxidant enzyme (AOE), including SOD and catalase. We also found that 3-BrFlu up-regulated expression of the AOE and HO-1 induced by 3-BrFlu through Nrf-2 expression. However, the 3-BrFlu-induced upregulation of AOE and HO-1 expression could not be revised the responses of vascular endothelial dysfunction. In conclusion, 3-BrFlu is a hazardous substance that results in vascular endothelial dysfunction through the MAPK-mediated-NFκB pro-inflammatory pathway and intracellular ROS generation.


Subject(s)
Endothelium, Vascular , Fluorenes , NF-kappa B , Reactive Oxygen Species , Zebrafish , Animals , Reactive Oxygen Species/metabolism , Fluorenes/toxicity , NF-kappa B/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Cell Line , Cyclooxygenase 2/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Dinoprostone/metabolism , Dose-Response Relationship, Drug , Capillary Permeability/drug effects
11.
Magn Reson Imaging ; 109: 173-179, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484948

ABSTRACT

BACKGROUND: Increasing evidence has indicated that high tissue stiffness (TS) may be a potential biomarker for evaluation of tumor aggressiveness. PURPOSE: To investigate the value of magnetic resonance elastography (MRE)-based quantitative parameters preoperatively predicting the tumor grade and subtype of cervical cancer (CC). STUDY TYPE: Retrospective. POPULATION: Twenty-five histopathology-proven CC patients and 7 healthy participants. FIELD STRENGTH/SEQUENCE: 3.0T, magnetic resonance imaging (MRI) (LAVA-flex) and MRE with a three-dimensional spin-echo echo-planar imaging. ASSESSMENT: The regions of interest (ROIs) were manually drawn by two observers in tumors to measure mean TS, storage modulus (G'), loss modulus (G″) and damping ratio (DR) values. Surgical specimens were evaluated for tumor grades and subtypes. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) was expressed in terms of inter-observer agreements. t-test or Mann-Whitney nonparametric test was used to compare the complex modulus and apparent diffusion coefficient (ADC) values between different tumor groups. Area under the receiver operating characteristic curve (AUC) analysis was used to evaluate the diagnostic performance. RESULTS: The TS of endocervical adenocarcinoma (ECA) group was significantly higher than that in squamous cell carcinoma (SCC) group (5.27 kPa vs. 3.44 kPa, P = 0.042). The TS also showed significant difference between poorly and well/moderately differentiated CC (5.21 kPa vs. 3.47 kPa, P = 0.038), CC patients and healthy participants (4.18 kPa vs. 1.99 kPa, P < 0.001). The cutoff value of TS to discriminate ECA from SCC was 4.10 kPa (AUC: 0.80), while it was 4.42 kPa to discriminate poorly from well/moderately differentiated CC (AUC: 0.83), and 2.25 kPa to distinguish normal cervix from CC (AUC: 0.88), respectively. There were no significant difference in G″, DR and ADC values between any subgroups except for comparison of healthy participants and CC patients (P = 0.001, P = 0.004, P < 0.001, respectively). DATA CONCLUSION: 3D MRE-assessed TS shows promise as a potential biomarker to preoperatively assess tumor grade and subtype of CC.


Subject(s)
Elasticity Imaging Techniques , Uterine Cervical Neoplasms , Female , Humans , Elasticity Imaging Techniques/methods , Retrospective Studies , Uterine Cervical Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Biomarkers
12.
Environ Toxicol ; 39(5): 2927-2936, 2024 May.
Article in English | MEDLINE | ID: mdl-38303669

ABSTRACT

Macrophages play an important role in defending the body against invading pathogens. In the face of pathogens, macrophages become activated and release toxic materials that disrupt the pathogens. Macrophage overactivation can lead to severe illness and inflammation. Wogonin has several therapeutic effects, including anti-inflammatory, anticancer, antioxidant, and neuroprotective effects. No studies have investigated the cytotoxic effects of wogonin at concentrations of more than 0.1 mM in RAW264.7 cells. In this study, RAW 264.7 cells were treated with wogonin, which, at concentrations of more than 0.1 mM, had cytotoxic and genotoxic effects in the RAW264.7 cells, leading to apoptosis and necrosis. Further, wogonin at concentrations of more than 0.1 mM induced caspase-3, caspase-8, and caspase-9 activation and mitochondrial dysfunction and death receptor expression. These results suggest that wogonin induces apoptosis through upstream intrinsic and extrinsic pathways by exhibiting cytotoxic and genotoxic effects.


Subject(s)
Apoptosis , Flavanones , Flavanones/pharmacology , Macrophages , DNA Damage
13.
Environ Toxicol ; 39(5): 2970-2979, 2024 May.
Article in English | MEDLINE | ID: mdl-38314619

ABSTRACT

Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.


Subject(s)
Cyclizine , Mitochondrial Diseases , Humans , Cyclizine/metabolism , Cyclizine/pharmacology , Cytochromes c/metabolism , Mitochondria/metabolism , Apoptosis , Caspases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Macrophages , Necrosis/metabolism , Mitochondrial Diseases/metabolism
14.
J Clin Endocrinol Metab ; 109(6): 1540-1549, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38124275

ABSTRACT

CONTEXT: There is limited data on the clinical significance of metabolic hyperferritinemia (MHF) based on the most recent consensus. OBJECTIVE: We aimed to validate the clinical outcomes of MHF in the general population and patients with biopsy-proven metabolic dysfunction-associated fatty liver disease (MAFLD). METHODS: The NHANES database and PERSONS cohort were included. MHF was defined as elevated serum ferritin with metabolic dysfunction (MD) and stratified into different grades according to ferritin (grade 1: 200 [females]/300 [males]-550 ng/mL; grade 2: 550-1000 ng/mL; grade 3: >1000 ng/mL). The clinical outcomes, including all-cause death, comorbidities, and liver histology, were compared between non-MHF and MHF in adjusted models. RESULTS: In NHANES, compared with non-MHF with MD, MHF was related to higher risks of advanced fibrosis (P = .036), elevated albumin-creatinine ratio (UACR, P = .001), and sarcopenia (P = .013). Although the association between all grades of MHF and mortality was insignificant (P = .122), grades 2/3 was associated with increased mortality (P = .029). When comparing with non-MHF without MD, the harmful effects of MHF were more significant in mortality (P < .001), elevated UACR (P < .001), cardiovascular disease (P = .028), and sarcopenia (P < .001). In the PERSONS cohort, MHF was associated with more advanced grades of steatosis (P < .001), lobular inflammation (P < .001), advanced fibrosis (P = .017), and more severe hepatocellular iron deposition (P < .001). CONCLUSION: Both in the general population and in at-risk individuals with MAFLD, MHF was related with poorer clinical outcomes.


Subject(s)
Ferritins , Hyperferritinemia , Humans , Female , Male , Middle Aged , Adult , Cohort Studies , Hyperferritinemia/blood , Hyperferritinemia/diagnosis , Ferritins/blood , Consensus , Nutrition Surveys , Aged , Prognosis
15.
J Nutr Biochem ; 122: 109457, 2023 12.
Article in English | MEDLINE | ID: mdl-37797731

ABSTRACT

Obesity is associated with accumulation of inflammatory immune cells in white adipose tissue, whereas thermogenic browning adipose tissue is inhibited. Dietary fatty acids are important nutritional components and several clinical and experimental studies have reported beneficial effects of docosahexaenoic acid (DHA) on obesity-related metabolic changes. In this study, we investigated effects of DHA on hepatic and adipose inflammation and adipocyte browning in high-fat diet-induced obese C57BL/6J mice, and in vitro 3T3-L1 preadipocyte differentiation. Since visceral white adipose tissue has a close link with metabolic abnormality, epididymal adipose tissue represents current target for evaluation. A course of 8-week DHA supplementation improved common phenotypes of obesity, including improvement of insulin resistance, inhibition of macrophage M1 polarization, and preservation of macrophage M2 polarization in hepatic and adipose tissues. Moreover, dysregulated adipokines and impaired thermogenic and browning molecules, considered obesogenic mechanisms, were improved by DHA, along with parallel alleviation of endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and mitochondrial DNA stress-directed innate immunity. During 3T3-L1 preadipocytes differentiation, DHA treatment decreased lipid droplet accumulation and increased the levels of thermogenic, browning, and mitochondrial biogenesis molecules. Our study provides experimental evidence that DHA mitigates obesity-associated inflammation and induces browning of adipose tissue in visceral epididymal adipose tissue. Since obesity is associated with metabolic abnormalities across tissues, our findings indicate that DHA may have potential as part of a dietary intervention to combat obesity.


Subject(s)
Diet, High-Fat , Docosahexaenoic Acids , Mice , Animals , Docosahexaenoic Acids/metabolism , Mice, Obese , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Adipocytes , Adipose Tissue, White/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Thermogenesis
16.
Epidemiol Health ; 45: e2023094, 2023.
Article in English | MEDLINE | ID: mdl-37905313

ABSTRACT

OBJECTIVES: This cohort study investigated the correlation between Parkinson's disease (PD) risk and chronic obstructive pulmonary disease (COPD) risk under particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5) exposure. METHODS: Data from the National Health Research Institutes of Taiwan were used in this study. The Environmental Protection Administration of Taiwan established an air quality monitoring network for monitoring Taiwan's general air quality. COPD was indicated by at least 3 outpatient records and 1 hospitalization for COPD. After the implementation of age, sex, and endpoint matching at a 1:4 ratio, 137 patients and 548 patients were included in the case group and control group, respectively. Based on the 2005 World Health Organization (WHO) standards, monthly air particle concentration data were classified into the following 4 groups in analyses of exposure-response relationships: normal level, and 1.0, 1.5, and 2.0 times the WHO level ([concentration ≥2]×25 µg/m3×number of exposure months). RESULTS: A multivariate logistic regression revealed that the 1.0 and 1.5 WHO level groups did not significantly differ from the normal level group, but the 2.0 WHO level did (odds ratio, 4.091; 95% confidence interval, 1.180 to 14.188; p=0.038). CONCLUSIONS: Elevated PM2.5 concentrations were significantly correlated with an increased risk of PD among patients with COPD. Furthermore, exposure to high PM2.5 levels can further increase the risk of PD.


Subject(s)
Parkinson Disease , Pulmonary Disease, Chronic Obstructive , Humans , Cohort Studies , Parkinson Disease/epidemiology , Taiwan/epidemiology , Case-Control Studies , Environmental Exposure/adverse effects , Pulmonary Disease, Chronic Obstructive/epidemiology , Particulate Matter/adverse effects
17.
Antibiotics (Basel) ; 12(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37760718

ABSTRACT

Pseudomonas aeruginosa with difficult-to-treat resistance has been designated as an urgent or serious threat by the CDC in the United States; therefore, novel antibacterial drugs and combination strategies are urgently needed. The sensor kinase RoxS is necessary for the aerobic growth of Pseudomonas aeruginosa. This study aimed to screen candidate RoxS inhibitors and evaluate their efficacy in treating multi-drug-resistant and extensively drug-resistant Pseudomonas aeruginosa in combination with meropenem and amikacin to identify promising combination strategies. RoxS protein structures were constructed using homology modeling and potential RoxS inhibitors, including Ezetimibe, Deferasirox, and Posaconazole, were screened from the FDA-approved ZINC drug database using molecular docking and molecular dynamics simulations. MIC and checkerboard assays were used to determine the in vitro antimicrobial efficacy of the three drugs in combination with antibiotics. The results of in vitro experiments showed an additive effect of 100 µg/mL Deferasirox or 16 µg/mL Posaconazole in combination with meropenem and a synergistic effect of 1.5 µg/mL Deferasirox and amikacin. In summary, these three drugs are potential inhibitors of RoxS, and their combination with meropenem or amikacin is expected to reverse the resistance of P. aeruginosa, providing new combination strategies for the treatment of clinically difficult-to-treat Pseudomonas aeruginosa.

18.
iScience ; 26(10): 107712, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37701567

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is a hormone-related cancer with high mortality and poor prognosis. Based on the transcriptome of 57,444 cells in ascites from 10 patients with HGSOC (including 5 pre-menopausal and 5 post-menopausal patients), we identified 14 cell clusters which were further classified into 6 cell types, including T cells, B cells, NK cells, myeloid cells, epithelial cells, and stromal cells. We discovered an increased proportion of epithelial cells and a decreased proportion of T cells in pre-menopausal ascites compared with post-menopausal ascites. GO analysis revealed the pre-menopausal tumor microenvironments (TME) are closely associated with viral infection, while the post-menopausal TME are mostly related to the IL-17 immune pathway. SPP1/CD44-mediated crosstalk between myeloid cells and B cells, NK cells, and stromal cells mainly present in the pre-menopausal group, while SPP1/PTGER4 -mediated crosstalk between myeloid cells and epithelial cells mostly present in the post-menopausal group.

19.
Oncogene ; 42(43): 3206-3218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37697064

ABSTRACT

Circular RNAs (circRNAs) play an important role in regulating the development of human cancers through diverse biological functions. However, the exact molecular mechanisms underlying the role of circRNAs in papillary thyroid cancer (PTC) remain largely unknown. Here, we found that hsa_circ_0011385, designated as circular eukaryotic translation initiation factor 3 subunit I (circEIF3I), preferentially localized in the cytoplasm of PTC cells and was more stable than its linear counterpart, EIF3I. Gain- and loss-of-function studies indicated that circEIF3I promoted PTC progression by facilitating cell proliferation, cell cycle, cell migration, and invasion in vitro, as well as PTC cell proliferation in vivo. Mechanistically, circEIF3I interacted with AU-rich element (ARE) RNA-binding factor 1 (AUF1) in the cytoplasm of PTC cells, thus reducing the degradation of Cyclin D1 mRNA and increasing Cyclin D1 protein production, ultimately resulting in PTC progression. Collectively, our results demonstrate the vital role of circEIF3I in PTC progression, supporting its significance as a potential therapeutic target.

20.
Environ Toxicol ; 38(12): 2819-2825, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37551787

ABSTRACT

Cyclizine exhibits sedation and treatment of nausea, vomiting, and motion sickness due to antihistaminic and antimuscarinic effects. Cyclizine has the potential for abuse due to the hallucinogenic and euphoric effect. The response of overdose and illegal abuse of cyclizine includes confusion, tremors, chest pain, ataxia, seizures, and lead to suicide. Macrophage plays the important role in the innate immunity. However, over activation of macrophages results in pro-inflammatory responses in peripheral tissues. In the present study, cyclizine was found to enhanced the generation of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6. We further found that secretion of nitrogen oxide (NO) induced by cyclizine via expression of inducible nitric oxide synthases (iNOS). Cyclizine exhibited parallel stimulation of phosphorylation of nuclear factor-κB (NFκB) p65, and its up-stream factor Akt. These results indicated that the expression of pro-inflammatory cytokines, pro-inflammatory mediators, and adhesion molecules would be induced by cyclizine via activation of Akt-NFκB pathway in macrophages.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-akt , Humans , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cyclizine/metabolism , Cyclizine/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL