Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124696, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38950475

ABSTRACT

Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 µM and 8-4000 µM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.


Subject(s)
Colloids , Glutathione , Iron , Limit of Detection , Luminescent Measurements , Mercury , Nickel , Mercury/analysis , Mercury/blood , Nickel/chemistry , Glutathione/analysis , Glutathione/blood , Glutathione/chemistry , Luminescent Measurements/methods , Colloids/chemistry , Iron/chemistry , Iron/analysis , Iron/blood , Catalysis , Oxides/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/blood , Luminescence , Phthalic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL