Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters








Database
Language
Publication year range
1.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38929152

ABSTRACT

Melanin, the pigment responsible for human skin color, increases susceptibility to UV radiation, leading to excessive melanin production and hyperpigmentation disorders. This study investigated the ethanolic extract of Garcinia atroviridis fruits for its phenolic and flavonoid contents, antioxidant activity, and impact on melanogenesis pathways using qRT-PCR and Western blot analysis. Utilizing network pharmacology, molecular docking, and dynamics simulations, researchers explored G. atroviridis fruit extract's active compounds, targets, and pharmacological effects on hyperpigmentation. G. atroviridis fruit extract exhibited antioxidant properties, scavenging DPPH• and ABTS•+ radicals radicals and chelating copper. It inhibited cellular tyrosinase activity and melanin content in stimulated B16F10 cells, downregulating TYR, TRP-1, phosphorylated CREB, CREB, and MITF proteins along with transcription levels of MITF, TYR, and TRP-2. LC-MS analysis identified thirty-three metabolites, with seventeen compounds selected for further investigation. Network pharmacology revealed 41 hyperpigmentation-associated genes and identified significant GO terms and KEGG pathways, including cancer-related pathways. Kaempferol-3-O-α-L-rhamnoside exhibited high binding affinity against MAPK3/ERK1, potentially regulating melanogenesis by inhibiting tyrosinase activity. Stable ligand-protein interactions in molecular dynamics simulations supported these findings. Overall, this study suggests that the ethanolic extract of G. atroviridis fruits possesses significant antioxidant, tyrosinase inhibitory, and anti-melanogenic properties mediated through key molecular targets and pathways.

2.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241795

ABSTRACT

Our early work indicated that methanolic extracts from the flowers, leaves, bark, and isolated compounds of Acacia saligna exhibited significant antioxidant activities in vitro. The overproduction of reactive oxygen species (ROS) in the mitochondria (mt-ROS) interfered with glucose uptake, metabolism, and its AMPK-dependent pathway, contributing to hyperglycemia and diabetes. This study aimed to screen the ability of these extracts and isolated compounds to attenuate the production of ROS and maintain mitochondrial function via the restoration of mitochondrial membrane potential (MMP) in 3T3-L1 adipocytes. Downstream effects were investigated via an immunoblot analysis of the AMPK signalling pathway and glucose uptake assays. All methanolic extracts effectively reduced cellular ROS and mt-ROS levels, restored the MMP, activated AMPK-α, and enhanced cellular glucose uptake. At 10 µM, (-)-epicatechin-6 (from methanolic leaf and bark extracts) markedly reduced ROS and mt-ROS levels by almost 30% and 50%, respectively, with an MMP potential ratio 2.2-fold higher compared to the vehicle control. (-)-Epicatechin 6 increased the phosphorylation of AMPK-α by 43%, with an 88% higher glucose uptake than the control. Other isolated compounds include naringenin 1, naringenin-7-O-α-L-arabinopyranoside 2, isosalipurposide 3, D-(+)-pinitol 5a, and (-)-pinitol 5b, which also performed relatively well across all assays. Australian A. saligna active extracts and compounds can reduce ROS oxidative stress, improve mitochondrial function, and enhance glucose uptake through AMPK-α activation in adipocytes, supporting its potential antidiabetic application.


Subject(s)
Acacia , Catechin , Hypoglycemic Agents , Animals , Mice , 3T3-L1 Cells , Acacia/chemistry , Adipocytes/metabolism , AMP-Activated Protein Kinases/metabolism , Australia , Catechin/chemistry , Catechin/pharmacology , Glucose/metabolism , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism
3.
J Tradit Complement Med ; 9(1): 66-72, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30671368

ABSTRACT

Croton roxburghii and Croton sublyratus have been used as skin treatments in traditional medicine. The objective of the present study was to investigate the antimelanogenic effect of ethanol extracts of Croton roxburghii (CRE) and Croton sublyratus (CSE) leaves on cellular melanin content and cellular tyrosinase activity as mediated by the action of microthalmia transcription factor (MITF) and melanogenic enzymes. Croton roxburghii and Croton sublyratus leaves were extracted by petroleum ether, dichloromethane and absolute ethanol, sequentially. The ethanolic crude extracts were examined for antimelanogenic activity by their ability to decrease melanin content and cellular tyrosinase activity in alpha-melanocyte-stimulating hormone-stimulated B16F10 melanoma cells. In addition, the extracts were evaluated to determine a plausible mechanism of melanogenesis suppression through determining the activation of MITF transcription factor and melanogenic proteins (tyrosinase, tyrosinase-related protein 1 or TRP-1 and tyrosinase-related protein 2 or TRP-2) at the transcriptional and translation levels in α-MSH-induced B16F10 cells. Upon treatment with CRE and CSE, the cells showed significant decreases in melanin content and cellular tyrosinase activity. CRE and CSE also suppressed MITF, tyrosinase, TRP-1 and TRP-2 at the transcription and translation levels in α-MSH-stimulated melanin biosynthesis in B16F10 cells. Our finding shows that CRE and CSE inhibit melanin content and cellular tyrosinase activity through suppressing MITF and melanogenic enzymes. CRE and CSE may be useful to combine with skin whitening agents for cosmetic uses.

4.
Analyst ; 144(1): 290-298, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30402635

ABSTRACT

Recently, paper has gained traction in the biotechnology research field due to its ability to be a substrate for 3D cell culture. In this work, we demonstrate the application of paper-based 3D cell culture for rapid and easy screening of the effect of natural compounds on melanin production. Whatman No. 1 filter paper was used as the substrate for B16F10 melanoma cell culture. The use of paper is beneficial for supporting the 3D structure of cells, which makes the result more reliable due to the similarity to in vivo conditions. Furthermore, paper is beneficial for melanin observation due to melanin's black color, which is easily in situ visualized after it is cultured on white paper. Matrigel was used to encapsulate cells before being pipetted onto the paper to prevent the passing of cells through paper pores. The intensity of melanin can then be observed with the naked eye and analyzed by scanning the paper. The analysis process took only 20 minutes, which is faster than that of the conventional absorbance spectroscopy, owing to the elimination of centrifugation, melanin solubilization, and the absorbance measurement step. The color intensity on the paper showed a direct proportion with increased α-MSH concentrations, confirming that the color on the paper was melanin. The 3D structure of cells was confirmed by using a scanning electron microscope. To demonstrate the application of the paper-based scaffold, paper-based 3D cell culture was used for screening the effects of Kojic acid and Arbutin on melanin production, which showed increased anti-melanogenesis effects with increased concentrations of natural compounds. High cell viability was observed over 120 hours. In conclusion, the developed paper-based scaffold can be used for screening the effect of natural compounds on melanin production, as a rapid and simple method with low cost.


Subject(s)
Cell Culture Techniques/methods , Drug Evaluation, Preclinical/methods , Melanins/antagonists & inhibitors , Paper , Animals , Arbutin/pharmacology , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Cell Survival/drug effects , Limit of Detection , Mice , Pyrones/pharmacology , alpha-MSH/metabolism
5.
BMC Complement Altern Med ; 17(1): 487, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29121910

ABSTRACT

BACKGROUND: Ultraviolet radiation from sunlight induces overproduction of reactive oxygen species (ROS) resulting in skin photoaging and hyperpigmentation disorders. Novel whitening and anti-wrinkle compounds from natural products have recently become of increasing interest. The purpose of this study was to find products that reduce ROS in 14 Thai plant extracts. METHODS: To determine total phenolic and flavonoid content, antioxidant activity, anti-tyrosinase activity and anti-collagenase activity, we compared extracts of 14 Thai plants prepared using different solvents (petroleum ether, dichloromethane and ethanol). Antioxidant activities were determined by DPPH and ABTS assays. RESULTS: Total phenolic content of the 14 Thai plants extracts was found at the highest levels in ethanol followed by dichloromethane and petroleum ether extracts, respectively, while flavonoid content was normally found in the dichloromethane fraction. Scavenging activity ranged from 7 to 99% scavenging as assessed by DPPH and ABTS assays. The ethanol leaf extract of Ardisia elliptica Thunb. had the highest phenolic content, antioxidant activity and collagenase inhibition, while Cassia alata (L.) Roxb. extract had the richest flavonoid content. Interestingly, three plants extracts, which were the ethanolic fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb., had high antioxidant content and activity, and significantly inhibited both tyrosinase and collagenase. CONCLUSION: Our finding show that the ethanol fractions of Annona squamosa L., Ardisia elliptica Thunb. and Senna alata (L.) Roxb. show promise as potential ingredients for cosmetic products such as anti-wrinkle agents and skin whitening products.


Subject(s)
Antioxidants/analysis , Enzyme Inhibitors/analysis , Monophenol Monooxygenase/antagonists & inhibitors , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antioxidants/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/drug effects , Biphenyl Compounds , Collagenases/drug effects , Enzyme Inhibitors/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Matrix Metalloproteinase Inhibitors/analysis , Phenols/analysis , Phenols/chemistry , Picrates , Plant Extracts/analysis , Thailand
6.
Biochem Biophys Res Commun ; 494(1-2): 101-106, 2017 12 09.
Article in English | MEDLINE | ID: mdl-29050941

ABSTRACT

Insulin resistance is a major defect underlying type 2 diabetes development. Skeletal muscle tissue and adipocyte tissue are the major sites of postprandial glucose disposal, and enhancing glucose uptake into this tissue may decrease insulin resistance in type 2 diabetes patients. Mahanine (3,11-dihydro-3,5-dimethyl-3-(4-methyl-3-pentenyl)pyrano[3,2-a]carbazol-9-ol) has been reported to be a major bioactive carbazole alkaloid that has many biological activities including antitumor, anti-inflammatory, antioxidant and anti-diabetic activities. However, the molecular mechanism and signaling pathways mediating the anti-diabetic effects of mahanine require further investigation. Therefore, the aim of this study was to investigate the effects of mahanine, a carbazole alkaloid from Murraya koenigii, on glucose uptake and glucose transporter 4 (GLUT4) translocation in skeletal muscle and adipocyte cells. Mahanine treatment promoted a dose dependent increased in glucose uptake in L6 myotubes and adipocyte cells via activation of the Akt signaling pathway. Mahanine induced Akt-activation was reversed by co-treatment with wortmannin, an Akt inhibitor. Moreover, it was found that mahanine significantly enhanced GLUT4 translocation to the plasma membrane in L6 myotubes. These results suggest that increased activation of the Akt signaling pathway lead to increased plasma membrane GLUT4 content and increased glucose uptake. These data strongly suggest that mahanine has anti-diabetic potential for treating diabetes.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Carbazoles/pharmacology , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , 3T3-L1 Cells , AMP-Activated Protein Kinases/metabolism , Animals , Biological Transport, Active/drug effects , Carbazoles/administration & dosage , Cell Line , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell Survival/drug effects , Dose-Response Relationship, Drug , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/administration & dosage , Insulin Resistance , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
7.
Tohoku J Exp Med ; 242(4): 291-302, 2017 08.
Article in English | MEDLINE | ID: mdl-28794318

ABSTRACT

Cholangiocarcinoma represents the second most common primary liver tumor after hepatocellular carcinoma. Mahanine, a carbazole alkaloid derived from Murraya koenigii (Linn.) Spreng, has been used as folk medicine in Thailand, where the liver fluke-associated cholangiocarcinoma is common. The expression of microphthalmia-associated transcription factor (MITF) is maintained at immunohistochemically undetectable levels in hepatocytes and cholangiocytes. To explore the regulation of MITF expression in the liver, we immunohistochemically analyzed the MITF expression using hepatocellular carcinoma and cholangiocarcinoma specimens of the human liver cancer tissue array. MITF immunoreactivity was detected in subsets of hepatocellular carcinoma (6 out of 38 specimens; 16%) and cholangiocarcinoma (2/7 specimens; 29%). Moreover, immunoreactivity for glioma-associated oncogene 1 (GLI1), a transcription factor of the Hedgehog signaling pathway, was detected in 55% of hepatocellular carcinoma (21/38 specimens) and 86% of cholangiocarcinoma (6/7 specimens). Importantly, MITF was detectable only in the GLI1-positive hepatocellular carcinoma and cholangiocarcinoma, and MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. Subsequently, the effect of mahanine was analyzed in HepG2 human hepatocellular carcinoma and HuCCT1 and KKU-100 human cholangiocarcinoma cells. Mahanine (25 µM) showed the potent cytotoxicity in these hepatic cancer cell lines, which was associated with increased expression levels of MITF, as judged by Western blot analysis. MITF is over-expressed in subsets of hepatocellular carcinoma and cholangiocarcinoma, and detectable MITF immunoreactivity is associated with poor prognosis in patients with hepatocellular carcinoma. MITF expression levels may be determined in hepatic cancer cells by the balance between the Hedgehog signaling and the cellular stress.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cholangiocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Microphthalmia-Associated Transcription Factor/genetics , Carbazoles/chemistry , Carbazoles/pharmacology , Carbazoles/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Microphthalmia-Associated Transcription Factor/metabolism , Middle Aged , Pyridines/pharmacology , Pyridines/therapeutic use , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
8.
Pharmacogn Mag ; 11(41): 117-22, 2015.
Article in English | MEDLINE | ID: mdl-25709220

ABSTRACT

BACKGROUND: Diabetes mellitus is one of the leading chronic diseases worldwide. In patients with poor glycemic control, high blood glucose level may lead to other life-threatening complications. Pandanus amaryllifolius Roxb. (PA) leaves are used in traditional medicine for the treatment of diabetes. OBJECTIVE: This study evaluated the effect of crude extract from PA leaves on blood glucose level and the hypoglycemic mechanisms. MATERIALS AND METHODS: Thirty healthy volunteers were asked to drink PA tea (test-group) or hot water (control group) 15 min after glucose loading (75 g) in a standard oral glucose tolerance test. To study hypoglycemic mechanisms, PA leaves were extracted using two different methods. Method 1; dried PA leaves were extracted with distilled water at 90°C for 15 min, and method 2; dried PA leaves were extracted with 95% ethanol. Both PA extracts were tested for α-glucosidase enzyme inhibition, insulin stimulation, and glucose uptake stimulation. RESULTS: The average of blood glucose level in the control group was 5.55 ± 0.98 mmol/l, while in PA treated group was 6.16 ± 0.79 mmol/l which were statistically different (P < 0.001). The results of antihyperglycemic mechanism showed that PA extracts, prepared both methods, could inhibit α-glucosidase enzyme and induce insulin production in rat pancreatic cell (RINm5F) in dose-dependent manner (P < 0.05). CONCLUSIONS: The knowledge gained from this research can be used as a basis for a new drug discovery for the treatment of diabetes.

SELECTION OF CITATIONS
SEARCH DETAIL