Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Ultrason Sonochem ; 11(1): 27-32, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14624984

ABSTRACT

Our work is a step to a better understanding of high frequency ultrasonic reactors behaviour. Using finite elements calculations, it was demonstrated that localization of chemical and physical effects can be well correlated with mechanical behaviour of ultrasound emitter. This complementary approach enables us to propose a full interpretation of the sonochemical reactor behaviour. A major reason of scientific interest on ultrasound is the well-known enhancement of chemical or physical phenomena. This is so important that "Enhancement" is probably the most used word in the title of related publications. To fully understand experimental results, present work demonstrates that ultrasound needs also to significantly enhance a very difficult knowledge transfer operation that might be named interdisciplinary co-working. Hence, ultrasound is now used and studied in many different fields of science such as acoustic, chemistry, medical imaging, disease treatment (lithotripsy), non-destructive testing. Each one has his own vocabulary, approach, and method to describe the phenomenon. In this work four different methodologies were involved to study of the same effect but using a chemical, chemical engineering, physical and mechanical approach respectively. All these viewpoints were then brought together in order to explain new original results.

2.
Ultrason Sonochem ; 7(4): 207-11, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11062877

ABSTRACT

In order to determine the parameters required to describe and to optimize sonochemical reactors, we have investigated the water flow inside such a reactor. With this aim, the experimental velocity field has been measured by tomography laser. The influence of certain parameters such as the electric power, the water height and the fluid viscosity has been evaluated. At the same time, the water movement has been studied theoretically using Nyborg's model. We have tried to improve this model by considering a three-dimensional velocity.

SELECTION OF CITATIONS
SEARCH DETAIL