Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Virus Res ; 243: 31-35, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29029951

ABSTRACT

Hepatitis C virus (HCV) persistence results from inefficiencies of both innate and adaptive immune responses to eradicate the infection. A functional impairment of circulating Vγ9Vδ2 T-cells was described but few data are available on Vγ9Vδ2 T-cells in the liver that, however, represents the battlefield in the HCV/host interaction. Aim of this work was to compare circulating and intrahepatic Vγ9Vδ2 T-cells in chronic HCV-infected patients (HCVpos) and in HCV-negative (HCVneg) subjects. Phenotypic and functional analysis was performed by flow cytometry. Anti-HCV activity was analyzed by using an in vitro autologous liver culture system. Independently from HCV infection, the liver was enriched of Vγ9Vδ2 T-cells expressing an effector/activated phenotype. In contrast, an enrichment of PD-1 expressing Vγ9Vδ2 T-cells was observed both in the peripheral blood and in the liver of HCVpos patients, probably due to a persistent antigenic stimulation. Moreover, a lower frequency of IFN-γ producing Vγ9Vδ2 T-cells was observed in the liver of HCVpos patients, suggesting a functional impairment in the cytokine production in HCVpos liver. Despite this hypo-responsiveness, intrahepatic Vγ9Vδ2 T-cells are able to exert an anti-HCV activity after specific stimulation. Altogether, our data show that HCV infection induced a dysregulation of intrahepatic Vγ9Vδ2 T cells that maintain their anti-HCV activity after specific stimulation. A study aimed to evaluate the mechanisms of the antiviral activity may be useful to identify new pathways able to improve Vγ9Vδ2 T-cells intrahepatic function during HCV infection.


Subject(s)
Hepacivirus/physiology , Hepatitis C/virology , Liver/immunology , T-Lymphocytes/immunology , Virus Replication , Adult , Aged , Female , Hepacivirus/genetics , Hepacivirus/isolation & purification , Hepatitis C/immunology , Humans , Interferon-gamma/genetics , Interferon-gamma/immunology , Liver/virology , Male , Middle Aged , Young Adult
2.
Cell Death Dis ; 7: e2164, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27031961

ABSTRACT

Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hemorrhagic Fever, Ebola/pathology , ADP-ribosyl Cyclase 1/metabolism , Adult , Antibodies, Monoclonal/therapeutic use , Apoptosis , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Ebolavirus/physiology , Enzyme-Linked Immunospot Assay , Flow Cytometry , HLA-DR Antigens/metabolism , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Humans , Immunohistochemistry , Interferon-gamma/analysis , Longitudinal Studies , Lymphocyte Activation , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism , fas Receptor/metabolism
3.
Int J Immunopathol Pharmacol ; 24(1): 139-48, 2011.
Article in English | MEDLINE | ID: mdl-21496396

ABSTRACT

Glioblastoma multiforme (GBM), the most frequent and aggressive primary brain tumor in humans, responds modestly to treatment: most patients survive less than one year after diagnosis, despite both classical and innovative treatment approaches. A recent paper focused on γδ T-cell response in GBM patients, suggesting the application of an immunomodulating strategy based on γδ T-cells which is already in clinical trials for other tumors. Human Vγ2 T-cells recognize changes in the mevalonate metabolic pathway of transformed cells by activating cytotoxic response, and by cytokine and chemokine release. Interestingly, this activation may also be induced in vivo by drugs, such as zoledronic acid, that induce the accumulation of Vγ2 T-cell ligand Isopentenyl-pyrophosphate by blocking the farnesyl pyrophosphate synthase enzyme. The aim of our work is to confirm whether bisphosphonate treatment would make glioma cell lines more susceptible to lysis by in vitro expanded γδ T-cells, improving their antitumor activity. We expanded in vitro human Vγ2 T-cells by phosphoantigen stimulation and tested their activity against glioma cell lines. Co-culture with glioma cells induced Vγ2 T-cell differentiation in effector/memory cells, killing glioma cells by the release of perforin. Interestingly, glioma cells were directly affected by zoledronic acid; moreover, treatment increased their activating ability on Vγ2 T-cells, inducing an effective antitumor cytotoxic response. Taken together, our results show that aminobisphosphonate drugs may play a dual role against GBM, by directly affecting tumor cells, and by enhancing the antitumor response of Vγ2 T-cells. Our results confirm the practicability of this approach as a new immunotherapeutic strategy for GBM treatment.


Subject(s)
Bone Density Conservation Agents/pharmacology , Brain Neoplasms/drug therapy , Cytotoxicity, Immunologic/drug effects , Diphosphonates/pharmacology , Glioma/drug therapy , Imidazoles/pharmacology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/drug effects , Brain Neoplasms/immunology , Cell Line, Tumor , Glioma/immunology , Humans , Immunologic Memory , NK Cell Lectin-Like Receptor Subfamily K/physiology , Perforin/metabolism , T-Lymphocytes/immunology , Zoledronic Acid
SELECTION OF CITATIONS
SEARCH DETAIL