Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters








Database
Language
Publication year range
1.
Microb Pathog ; 173(Pt A): 105878, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36372206

ABSTRACT

Antimicrobial resistance (AMR) among microorganisms has become one of the worldwide concerns of this century and continues to challenge us. To properly understand this problem, it is essential to know the genes that cause AMR and their resistance mechanisms. Our present study focused on Klebsiella pneumoniae, which possesses AMR genes conferring resistance against multiple antibiotics. A gene interaction network of 42 functional partners was constructed and analyzed to broaden our understanding. Three closely related clusters (C1-C3) having an association with multi-drug resistance mechanisms were identified by clustering analysis. The enrichment analysis illustrated 30 genes in biological processes, 24 genes in molecular function, and 25 genes in cellular components having a significant role. The analysis of the gene interaction network revealed genes birA2, folP, pabC, folA, gyrB, glmM, gyrA, thyA_2 had maximum no. of interactions with their functional partners viz. 26, 25, 25, 24, 23, 23, 23, 23 respectively and can be considered as hub genes. Analyzing the enriched pathways and Gene Ontologies provides insight into AMR's molecular basis. In addition, the proposed study could aid the researchers in developing new treatment options to combat multi-drug resistant K. pneumoniae.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Drug Resistance, Multiple, Bacterial/genetics , Gene Regulatory Networks , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/drug therapy , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL