Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters








Publication year range
2.
Sci Rep ; 13(1): 4682, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949227

ABSTRACT

This study aims to establish whether zinc (Zn) and cadmium (Cd) share similar physiological mechanisms for uptake and translocation in cacao plants (Theobroma cacao L.). Multiple-collector ICP-MS was used to determine the Zn stable isotope compositions in the roots, stems and leaves of 19 diverse cacao genotypes grown in hydroponics with 20 µmol L-1 CdCl2. Additional plants of one genotype were grown in hydroponic solutions containing lower Cd concentrations (0 and 5 µmol L-1 added CdCl2). Regardless of the Cd concentration used in the exposures, the Zn stable isotope compositions show the same systematic patterns in plant organs, with δ66Znroot > δ66Znstem > δ66Znleaf (δ66Zn denotes relative differences in 66Zn/64Zn ratios in parts per thousand). The mean Zn stable isotope fractionation between the plants and the hydroponic solutions was ε66Znuptake = -1.15 ± 0.36‰ (2SD), indicating preferential uptake of isotopically light Zn by plants from the hydroponic solution. The mean  stable isotope fractionation factor associated with translocation of Zn from roots to shoots, ε66Znseq-mob = + 0.52 ± 0.36‰ (2SD), shows that isotopically heavy Zn is preferentially sequestered in the cacao roots, whilst isotopically light Zn is mobilised to the leaves. A comparison with the Cd stable isotope compositions of the same plants shows that both isotopically light Zn and Cd are preferentially taken up by cacao plants. In contrast to Zn, however, the cacao roots retain isotopically light Cd and transfer isotopically heavy Cd to the leaves.


Subject(s)
Cacao , Soil Pollutants , Zinc/analysis , Cadmium/analysis , Hydroponics , Zinc Isotopes , Isotopes , Plant Roots/chemistry
3.
Science ; 379(6630): 369-372, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36701454

ABSTRACT

Material inherited from different nucleosynthesis sources imparts distinct isotopic signatures to meteorites and terrestrial planets. These nucleosynthetic isotope anomalies have been used to constrain the origins of material that formed Earth. However, anomalies have only been identified for elements with high condensation temperatures, leaving the origin of Earth's volatile elements unconstrained. We determined the isotope composition of the moderately volatile element zinc in 18 bulk meteorites and identified nucleosynthetic zinc isotope anomalies. Using a mass-balance model, we find that carbonaceous bodies, which likely formed beyond the orbit of Jupiter, delivered about half of Earth's zinc inventory. Combined with previous constraints obtained from studies of other elements, these results indicate that ~10% of Earth's mass was provided by carbonaceous material.

4.
Anal Chem ; 92(16): 11232-11241, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32662265

ABSTRACT

The application of Pb isotopes to marine geochemistry is currently hindered by challenges associated with the analysis of Pb isotopes in seawater. The current study evaluates the performance of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements of seawater Pb isotope compositions following Pb separation by either solid-phase extraction with Nobias Chelate PA-1 resin or coprecipitation with Mg(OH)2 and using either a Pb double spike or external normalization to Tl for mass bias correction. The four analytical combinations achieve results of similar quality when measuring 1-7 ng of seawater Pb, with reproducibilities (two standard deviations, 2SD) of 100-1200 ppm for 206Pb/207Pb and 208Pb/207Pb and 300-1700 ppm for ratios involving the minor 204Pb isotope. All four procedures enable significantly improved sample throughput compared to an established thermal ionization mass spectrometry (TIMS) double-spike method and produce unbiased seawater Pb isotope compositions with similar or improved precision. Nobias extraction is preferable to coprecipitation due to its greater analytical throughput and suitability for analyses of large seawater samples with high Si(OH)4 contents. The most accurate Pb isotope data are produced following Nobias extraction and double-spike correction as such analyses are least susceptible to matrix effects. However, Nobias extraction with Tl normalization constitutes an attractive alternative as, unlike the double-spike procedure, only a single mass spectrometric measurement is required, which improves analytical throughput and optimizes Pb consumption for analysis. Despite the advantages of solid-phase extraction, coprecipitation represents a useful Pb separation technique for samples with low to moderate Si contents as it is inexpensive, simple to implement, and the data are only marginally less accurate, especially when combined with a Pb double spike for mass bias correction.


Subject(s)
Isotopes/analysis , Lead/analysis , Seawater/analysis , Isotopes/isolation & purification , Lead/isolation & purification , Magnesium Hydroxide/chemistry , Mass Spectrometry/methods , Solid Phase Extraction/instrumentation , Solid Phase Extraction/methods
5.
RSC Adv ; 9(58): 34011-34022, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-35528875

ABSTRACT

The often high Cd concentrations of cacao beans are a serious concern for producers in Latin America due to the implementation of stricter Cd limits for cocoa products by the European Union in 2019. This is the first investigation to employ coupled Cd isotope and concentration measurements to study soil - cacao systems. Analyses were carried out for 29 samples of soils, soil amendments and cacao tree organs from organic farms in Ecuador that harvest three distinct cacao cultivars. The majority of soils from 0-80 cm depth have very similar δ114/110Cd of about -0.1‰ to 0‰. Two 0-5 cm topsoils, however, have high Cd concentrations coupled with heavy Cd isotope compositions of δ114/110Cd ≈ 0.2%, possibly indicating Cd additions from the tree litter used as organic fertilizer. Whilst cacao leaves, pods and beans are ubiquitously enriched in Cd relative to soils there are distinct Cd isotope signatures. The leaves and pods are isotopically heavier than the soils, with similar Δ114/110Cdleaf-soil values of 0.22 ± 0.07‰ to 0.41 ± 0.09‰. In contrast, the data reveal differences in Δ114/110Cdbean-leaf that may be linked to distinct cacao cultivars. In detail, Δ114/110Cdbean-leaf values of -0.34‰ to -0.40‰ were obtained for Nacional cacao from two farms, whilst CCN-51 hybrid cacao from a third farm showed no fractionation within error (-0.08 ± 0.13‰). As such, further work to investigate whether Cd isotopes are indeed useful for tracing sources of Cd enrichments in soils and to inform genetic efforts to reduce the Cd burden of cocoa is indicated.

6.
Anal Bioanal Chem ; 409(11): 2941-2950, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28210756

ABSTRACT

Biological reference materials with well-characterised stable isotope compositions are lacking in the field of 'isotope biochemistry', which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations: fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13‰ for δ66/64Zn (which denotes the deviation of the 66Zn/64Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotope analyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ66/64Zn ≈ -0.8 to 0.0‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results.


Subject(s)
Spectrophotometry, Atomic/methods , Spectrophotometry, Atomic/standards , Trace Elements/analysis , Trace Elements/standards , Zinc Isotopes/analysis , Zinc Isotopes/standards , Animals , Cattle , Certification , Fishes , Humans , Internationality , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Swine , Zinc Isotopes/chemistry
7.
Environ Sci Technol ; 48(16): 9030-6, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25055714

ABSTRACT

Thallium stable isotope data are used in this study, for the first time, to apportion Tl contamination in soils. In the late 1970s, a cement plant near Lengerich, Germany, emitted cement kiln dust (CKD) with high Tl contents, due to cocombustion of Tl-enriched pyrite roasting waste. Locally contaminated soil profiles were obtained down to 1 m depth and the samples are in accord with a binary mixing relationship in a diagram of Tl isotope compositions (expressed as ε(205)Tl, the deviation of the (205)Tl/(203)Tl ratio of a sample from the NIST SRM 997 Tl isotope standard in parts per 10(4)) versus 1/[Tl]. The inferred mixing endmembers are the geogenic background, as defined by isotopically light soils at depth (ε(205)Tl ≈ -4), and the Tl emissions, which produce Tl-enriched topsoils with ε(205)Tl as high as ±0. The latter interpretation is supported by analyses of the CKD, which is also characterized by ε(205)Tl ≈ ± 0, and the same ε(205)Tl value was found for a pyrite from the deposit that produced the cocombusted pyrite roasting waste. Additional measurements for samples from a locality in China, with outcrops of Tl sulfide mineralization and associated high natural Tl backgrounds, reveal significant isotope fractionation between soils (ε(205)Tl ≈ +0.4) and locally grown green cabbage (ε(205)Tl between -2.5 and -5.4). This demonstrates that biological isotope fractionation cannot explain the isotopically heavy Tl in the Lengerich topsoils and the latter are therefore clearly due to anthropogenic Tl emissions from cement processing. Our results thus establish that isotopic data can reinforce receptor modeling for the toxic trace metal Tl.


Subject(s)
Isotopes/analysis , Soil Pollutants/analysis , Thallium/analysis , Brassica/chemistry , China , Construction Materials , Environmental Monitoring , Germany , Industrial Waste , Iron , Sulfides
8.
Anal Bioanal Chem ; 402(2): 883-93, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22033821

ABSTRACT

Previous studies have revealed considerable Cd isotope fractionations in seawater, which can be used to study the marine cycling of this micronutrient element. The low Cd concentrations that are commonly encountered in nutrient-depleted surface seawater, however, pose a particular challenge for precise Cd stable isotope analyses. In this study, we have developed a new procedure for Cd isotope analyses of seawater, which is suitable for samples as large as 20 L and Cd concentrations as low as 1 pmol/L. The procedure involves the use of a (111)Cd-(113)Cd double spike, co-precipitation of Cd from seawater using Al(OH)(3), and subsequent Cd purification by column chromatography. To save time, seawater samples with higher Cd contents can be processed without co-precipitation. The Cd isotope analyses are carried out by multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The performance of this technique was verified by analyzing multiple aliquots of a large seawater sample that was collected from the English Channel, the SAFe D1 seawater reference material, and several samples from the GEOTRACES Atlantic intercalibration exercise. The overall Cd yield of the procedure is consistently better than 85% and the methodology can routinely provide ε (114/110)Cd data with a precision of about ±0.5 ε (2sd, standard deviation) when at least 20-30 ng of natural Cd is available for analysis. However, even seawater samples with Cd contents of only 1-3 ng can be analyzed with a reproducibility of about ±3 to ±5 ε. A number of experiments were furthermore conducted to verify that the isotopic results are accurate to within the quoted uncertainty.


Subject(s)
Cadmium/analysis , Chemistry Techniques, Analytical/methods , Seawater/chemistry , Calibration , Isotopes/analysis , Mass Spectrometry , Reproducibility of Results
9.
Anal Bioanal Chem ; 398(7-8): 3115-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20890747

ABSTRACT

Analysis of naturally occurring isotopic variations is a promising tool for investigating Zn transport and cycling in geological and biological settings. Here, we present the recently installed double-spike (DS) technique at the MAGIC laboratories at Imperial College London. The procedure improves on previous published DS methods in terms of ease of measurement and precisions obtained. The analytical method involves addition of a (64)Zn-(67)Zn double-spike to the samples prior to digestion, separation of Zn from the sample matrix by ion exchange chromatography, and isotopic analysis by multiple-collector inductively coupled plasma mass spectrometry. The accuracy and reproducibility of the method were validated by analyses of several in-house and international elemental reference materials. Multiple analyses of pure Zn standard solutions consistently yielded a reproducibility of about ±0.05‰ (2 SD) for δ(66)Zn, and comparable precisions were obtained for analyses of geological and biological materials. Highly fractionated Zn standards analyzed by DS and standard sample bracketing yield slightly varying results, which probably originate from repetitive fractionation events during manufacture of the standards. However, the δ(66)Zn values (all reported relative to JMC Lyon Zn) for two less fractionated in-house Zn standard solutions, Imperial Zn (0.10 ± 0.08‰: 2 SD) and London Zn (0.08 ± 0.04‰), are within uncertainties to data reported with different mass spectrometric techniques and instruments. Two standard reference materials, blend ore BCR 027 and ryegrass BCR 281, were also measured, and the δ(66)Zn were found to be 0.25 ± 0.06‰ (2 SD) and 0.40 ± 0.09‰, respectively. Taken together, these standard measurements ascertain that the double-spike methodology is suitable for accurate and precise Zn isotope analyses of a wide range of natural samples. The newly installed technique was consequently applied to soil samples and soil leachates to investigate the isotopic signature of plant available Zn. We find that the isotopic composition is heavier than the residual, indicating the presence of loosely bound Zn deposited by atmospheric pollution, which is readily available to plants.


Subject(s)
Chromatography, Ion Exchange/methods , Lolium/chemistry , Mass Spectrometry/methods , Soil/chemistry , Zinc Isotopes/analysis , Zinc/analysis , Mass Spectrometry/standards , Reproducibility of Results
10.
Water Res ; 44(19): 5673-83, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20599240

ABSTRACT

This study reports the adsorption of arsenate, As(V), on goethite (α-FeO(OH)) and oil-coated goethite at experimental conditions chosen to mimic settings of wastewater from oil fields being released into marine and freshwater bodies. Similarities are evident between the As(V)-goethite and As(V)-oil-goethite systems: i) Adsorption is fast and saturation is achieved within 180 min, ii) Reaction rates approximate to a pseudo second order rate expression and range between 6.5 and 52.3 × 10(-4)g/µmol/min, iii) Adsorption mechanisms are best described with a Langmuir model, and iv) Adsorption capacity rises with decreasing pH reflecting the increase of positive charges on the goethite surface. A difference is discernable in that the adsorption of As(V) is reduced significantly when the goethite is coated with oil. The similar experimental macroscopic observations for both systems, i.e., Langmuir model fits, reaction rates, and the effect of pH and ionic strength (I), suggest that the oil reduces the effective and/or reactive surface area. The zeta potential (ζ) indicates that the oil coating also changes the surface charge of the goethite, shifting the pH point of zero charge from 9.8 to about 3, thus contributing to the reduced As(V) adsorption. FTIR spectra show that As(V) interacts with the carbonyl functional groups of the oil. Our results suggest that oil-covered goethite significantly reduces the adsorption of As(V) and this points to a potentially significant indirect effect of oil on the cycling of As(V) and other oxyanions in oil polluted waters.


Subject(s)
Arsenates/isolation & purification , Iron Compounds/chemistry , Minerals/chemistry , Petroleum/analysis , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Arsenates/chemistry , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Spectroscopy, Fourier Transform Infrared , Water/chemistry , Water Pollutants, Chemical/chemistry
11.
Analyst ; 127(1): 174-7, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11827388

ABSTRACT

Quality control in sampling has been demonstrated as practicable in sampling procedures that require the combination of sample increments to form a composite sample. The proposed method requires no sampling resources or use of time beyond those normally used. Increments are allocated at random into two half-sized composites, each of which is analysed separately. The absolute difference between the two results is plotted on a one-sided control chart, which is interpreted like a Shewhart chart. In commonly prevailing circumstances the analytical precision is negligible and the chart represents sampling precision alone.

SELECTION OF CITATIONS
SEARCH DETAIL