Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters








Publication year range
1.
PLoS One ; 19(8): e0307210, 2024.
Article in English | MEDLINE | ID: mdl-39159168

ABSTRACT

Peat is the main constituent of cultivation substrates and a precious non-renewable fossil material. Peatlands provide important ecosystem services and allow the absorption and storage of carbon. Protecting peatlands helps tackle climate change and contributes to biodiversity conservation. Due to its importance, it is necessary to implement strategies to reduce the use of peat, such as replacing it with biomass-based alternative growing media constituents, such as Sphagnum moss. In this study, we compared the metal release and binding properties at two different pH, antioxidant activity, and total phenolic content of peat and Sphagnum moss from the Tierra del Fuego (TdF) region of southern Patagonia. Levels of the elements were determined by inductively coupled plasma mass spectrometry (ICP-MS), while the types and amounts of functional groups were characterized and compared using Fourier transform infrared (FTIR) spectroscopy. The total phenol level and antioxidant capacity were assessed using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl test. There are generally higher concentrations of leachable elements in peat than in Sphagnum moss at pH = 2, except Cs, Rb, Ti, and Zr. In contrast, at pH = 5, levels of all leached elements are highest in Sphagnum moss. Sphagnum moss shows a higher metal adsorption capacity than peat, except for Be, Mn, Tl, and Zn. Finally, the results showed that both matrices contained similar total phenolic contents: 0.018 ± 0.011 mg gallic acid equivalent (GAE) per gram dry sample for peat and 0.020 ± 0.007 mg GAE g-1 for Sphagnum moss. Instead, Sphagnum moss extracts showed a significantly higher antioxidant activity [0.026 ± 0.028 mmol Trolox equivalents (TE) g-1] than that estimated in peat (0.009 ± 0.005 mmol TE g-1). Humic acids, carboxylic acids, and phenolic and lignin groups were identified as the functional groups that mainly determined the antioxidant activity of the Sphagnum moss compared to peat. The present study resulted in an advancement of knowledge of these materials for more thoughtful future use and possible replacements.


Subject(s)
Antioxidants , Soil , Sphagnopsida , Sphagnopsida/chemistry , Sphagnopsida/metabolism , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Soil/chemistry , Metals/analysis , Metals/chemistry , Metals/metabolism , Phenols/analysis , Phenols/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
2.
Sci Rep ; 13(1): 7971, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37198446

ABSTRACT

Peatlands in southern South America (Tierra del Fuego region, TdF) play a key role in the ecological dynamics of Patagonia. It is, therefore, necessary to increase our knowledge and awareness of their scientific and ecological value to ensure their conservation. This study aimed to assess the differences in the distribution and accumulation of elements in peat deposits and Sphagnum moss from the TdF. Chemical and morphological characterization of the samples was carried out using various analytical techniques, and total levels of 53 elements were determined. Furthermore, a chemometric differentiation based on the elemental content of peat and moss samples was performed. Some elements (Cs, Hf, K, Li, Mn, Na, Pb, Rb, Si, Sn, Ti and Zn) showed significantly higher contents in moss samples than in peat samples. In contrast, only Mo, S and Zr were significantly higher in peat samples than in moss samples. The results obtained highlight the ability of moss to accumulate elements and to act as a means to facilitate the entry of elements into peat samples. The valuable data obtained in this multi-methodological baseline survey can be used for more effective conservation of biodiversity and preservation of the ecosystem services of the TdF.


Subject(s)
Bryophyta , Sphagnopsida , Ecosystem , Carbon Sequestration , Environmental Monitoring/methods , Sphagnopsida/chemistry , Soil , Carbon
3.
Food Chem ; 404(Pt B): 134771, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36332575

ABSTRACT

The traceability and authentication of PDOs wines are important issues for safeguarding their production and distribution systems. This paper evaluated seven Venetian PDO wines, i.e., Amarone, Bardolino, Custoza, Pinot Grigio, Recioto, Soave and Valpolicella. For this purpose, 219 wine samples from the Veneto region were characterised by determining 63 elements and six isotope ratios by HR-ICP-MS and MC-ICP-MS. Chemometric tools highlighted As, Ca, Cs, δ11B and 87Sr/86Sr as the most informative variables to differentiate the PDOs. Seven classification methods, such as Linear Discriminant Analysis, Quadratic Discriminant Analysis, k-Nearest Neighbours, Naïve Bayes, Random Forest, Artificial Neural Networking, and Support Vector Machine were tested and perform a correct classification for Amarone, Bardolino, Pinot Grigio and Recioto PDOs. This paper successfully proposes for the first time advanced traceability tools of seven Venetian PDO by the use of an integrated approach of multi-elemental and isotopes followed by chemometrics analysis.


Subject(s)
Trace Elements , Wine , Wine/analysis , Chemometrics , Bayes Theorem , Mass Spectrometry/methods , Trace Elements/analysis , Isotopes/analysis , Discriminant Analysis
4.
Chemosphere ; 308(Pt 1): 136261, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36057357

ABSTRACT

Bees are precious living beings for our planet. Thanks to their essential service of pollination, these insects allow the maintenance of biodiversity and the variety and amount of food available. Unfortunately, we are observing an increasingly devastating reduction of bee families and other pollinating insects for factors related to human activities, environmental pollution, diseases and parasites, compromise of natural habitats, and climate change. We show that probiotics can protect bees from element pollution. We collected bees, beeswax, honey, pollen, and propolis directly from hives in a rural area of central Italy to investigate the content of 41 elements in control (not supplemented with probiotics) and experimental (supplemented with probiotics) groups. Our data show a significantly lower concentration of some elements (Ba, Be, Cd, Ce, Co, Cu, Pb, Sn, Tl, and U) in experimental bees than in control groups, indicating a possible beneficial effect of probiotics in reducing the absorption of chemicals. This study presents the first data on element levels after probiotics have been fed to bees and provides the basis for future research in several activities relating to the environment, agriculture, economy, territory, and medicine.


Subject(s)
Probiotics , Propolis , Animals , Cadmium , Humans , Insecta , Lead , Pollination
5.
Environ Sci Pollut Res Int ; 29(24): 36057-36074, 2022 May.
Article in English | MEDLINE | ID: mdl-35060025

ABSTRACT

In this study, we determined the levels of elements (i.e. As, Be, Cd, Cr, Hg, Ni, Pb, U, and Zn) in bees and edible beehive products (honey, wax, pollen, and propolis) sampled from five selected sites in the Rome province (Italy). RATIONALE: to increase the information variety endowment, the monitoring breakdown structure (MBS) conceptual model was used (nine elements, 429 samples, and approximately thirteen thousand determinations over a 1-year survey). Thus, we employed Johnson's probabilistic method to build the control charts. Then, we measured the element concentration overlap ranges and the overlap bioaccumulation index (OBI). Subsequently, we evaluated the estimated daily intake (EDI) of the analysed elements and matched them with acceptable reference doses. The human health risk caused by the intake of individual elements found in edible beehive products and their risk summation were evaluated through the target hazard quotient (THQ) and hazard index (HI) methods. FINDINGS: excluding honey, this study confirms the capacity of wax, pollen, propolis, and bees to accumulate high levels of toxic and potentially toxic elements from the surrounding environment (with high OBI-U, i.e. OBI-Upper values, i.e. the common upper concentration limit of the overlap concentration range). Bees and pollen showed a high bioaccumulation Cd surplus (OBI-U = 44.0 and 22.3, respectively). On the contrary, honey had high OBI-L values (i.e. honey concentrates metals several times less than the common lower concentration limit of the overlap concentration range). This finding implies that honey is useless as an environmental indicator compared with the other biomonitor/indicators. The EDI values for the edible beehive products were lower than the health and safety reference doses for all the considered elements. Our data show that honey, wax, propolis, and pollen are safe for consumption by both adults and children (THQ < 1; HI < 1), even considering the sporadic possibility of consuming them simultaneously. ORIGINALITY: This study has been conducted for the first time in the Rome province and demonstrates that edible indicators are safe for consumption for the considered elements in bees and edible beehive products. Depending on the ecosystem/pollutants studied, the OBI consents to make a correct choice for environmental biomonitoring studies and to focus the attention on the most sensitive biomonitors/indicators when required at the project level.


Subject(s)
Honey , Metals, Heavy , Propolis , Biological Monitoring , Cadmium/analysis , Ecosystem , Environmental Monitoring , Honey/analysis , Metals, Heavy/analysis , Rome
6.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443466

ABSTRACT

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.


Subject(s)
Bees/chemistry , Biological Monitoring/methods , Mercury/analysis , Spectrometry, Fluorescence/methods , Animals , Cold Temperature , Cucumis melo/chemistry , Data Accuracy , Environmental Pollution/analysis , Fatty Acids/analysis , Honey/analysis , Italy , Pollen/chemistry , Propolis/analysis , Spectrophotometry, Atomic/methods , Waxes/analysis
7.
Molecules ; 25(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957599

ABSTRACT

Bee health and beehive products' quality are compromised by complex interactions between multiple stressors, among which toxic elements play an important role. The aim of this study is to optimize and validate sensible and reliable analytical methods for biomonitoring studies and the quality control of beehive products. Four digestion procedures, including two systems (microwave oven and water bath) and different mixture reagents, were evaluated for the determination of the total content of 40 elements in bees and five beehive products (beeswax, honey, pollen, propolis and royal jelly) by using inductively coupled plasma mass and optical emission spectrometry. Method validation was performed by measuring a standard reference material and the recoveries for each selected matrix. The water bath-assisted digestion of bees and beehive products is proposed as a fast alternative to microwave-assisted digestion for all elements in biomonitoring studies. The present study highlights the possible drawbacks that may be encountered during the elemental analysis of these biological matrices and aims to be a valuable aid for the analytical chemist. Total elemental concentrations, determined in commercially available beehive products, are presented.


Subject(s)
Metals/analysis , Trace Elements/analysis , Animals , Bees , Fatty Acids/chemistry , Honey , Mass Spectrometry , Microwaves , Pollen/chemistry , Propolis/chemistry , Spectrometry, Fluorescence , Temperature , Waxes/chemistry
8.
Sci Total Environ ; 742: 140590, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32629268

ABSTRACT

The ability of transplanted lichen Evernia (E.) prunastri (L.) to act as a high spatial biomonitoring tool for 14 polybrominated diphenyl ethers (PBDEs) was evaluated at 23 monitoring sites in a very polluted area in central Italy. The selected area is characterized by the presence of numerous emission sources, such as waste-to-energy plant, steel plant, vehicular traffic, and domestic heating. Transplanted E. prunastri proved to be a useful tool to biomonitor PBDEs, due to its ability to bioaccumulate individual congeners in varying concentrations in relation to the strength of the emission sources present over the territory. PBDEs levels widely ranged from 132 to 24,237 ng kg-1 dry weight, according to the sources of emission located around the monitoring sites. The highest concentrations were detected at the sites close to the municipal solid waste incinerator, steel plant, and high busy roads, confirming their important role as PBDEs emissions sources.


Subject(s)
Halogenated Diphenyl Ethers/analysis , Lichens , China , Environmental Monitoring , Italy , Solid Waste
9.
Environ Sci Pollut Res Int ; 27(31): 38819-38834, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32632679

ABSTRACT

This study aims to investigate the airborne elements' deposition by using native Usnea barbata lichens as biomonitors in the forested areas of Tierra del Fuego (TdF, southern Patagonia), an apparently pristine environment. The present study is linked to the volcanic eruption of the Puyehue-Cordón Caulle which started in north Patagonia in June 2011, which gives rise to long-distance transport of pollutants through the atmosphere at 1700 km from our sampling sites. The monitoring breakdown structure (MBS) was applied to three sampling campaigns in 2006 (baseline) âž” 2011-2012 (3 and 15 months after the volcanic event, respectively). We have on purpose enhanced the information variety endowment: (i) Seventy-one referenced sites were double sampled; (ii) up to 426 composite lichen samples were collected; (iii) twenty-six elements were measured by neutron activation analysis (As, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, U, Yb, Zn) for samples of 2011 and 2012 campaigns; (iv) thirteen common elements (As, Ba, Ca, Co, Cr, Cs, Fe, K, Na, Sb, Se, U, Zn) were determined in 2006 for the baseline comparison. The natural contamination by tephras is reflected by lichens more clearly in the 2011 campaign, where Ba, Cr, Na, Ca, Cs, and U showed higher median levels compared with the baseline campaign (2006). Ca, K, and Na were the most accumulated elements after the volcano event and could be associated with the volcanic ashes' deposition. Rare earth elements (REEs) showed no significant bioaccumulation levels between 2011 and 2012, indicating their association with higher lithogenic inputs than volcanic ashes. Using the Earth's crust as reference, nine elements (As, Ba, Br, Ca, K, Na, Sb, Se, and Zn) presented moderate/significant mean enrichment factor (EF) values (> 5). The usefulness of Usnea barbata as test species for direct biomonitoring oriented kinetic studies in areas characterized by a low human impact is confirmed. Eventually, our results confirm that TdF is not an actual pristine environment as earlier supposed.


Subject(s)
Lichens , Trace Elements/analysis , Environmental Monitoring , Forests , Humans , Kinetics , Surveys and Questionnaires
10.
Food Res Int ; 128: 108777, 2020 02.
Article in English | MEDLINE | ID: mdl-31955751

ABSTRACT

The purpose of this paper is to investigate the trace metal content in edible biomonitors (i.e., mollusks) in the Beagle Channel (southern Patagonia) and to assess the human health risks associated with their consumption. Rationale: The monitoring breakdown structure (MBS) conceptual model was applied to four sampling campaigns (2005 → 2012) that collected 729 samples of Mytilus chilensis and Nacella magellanica. The composition of trace elements (Cd, Cr, Cu, Ni, Pb and Zn) in the mollusks was determined using graphite furnace (GFAAS) or flame atomic absorption spectrometry (FAAS). We compared the mean obtained values with the maximum levels (MLs) of each element established by international organizations. Then, based on semi-structured interviews, we calculated the estimated daily intake (EDI) of local residents and compared it with safety reference doses, i.e., the provisional tolerable daily intake (PTDI), provisional maximum tolerable daily intake (PMTDI), and tolerable daily intake (TDI), as well as the benchmark dose level lower confidence limit for Pb (BMDL01, a reference point (RP)/point of departure (POD). Moreover, to obtain information about the potential health risks of ingesting heavy metals (HMs) through mollusk consumption, we evaluated the target hazard quotient (THQ) and the hazard index (HI). Findings: For Cd and Pb, 65% and 40% of bivalves exceeded the MLs established by the Mercado Común del Sur (Mercosur), respectively. Except for Cd in N. magellanica (i.e., 1.20 µg/kg/bw/day), EDI values were clearly lower than the safety reference doses. For Cr, Cu, Ni, Pb and Zn, mussels were safe for consumption and did not raise concerns for public health. Likewise, THQ values were well below one for most of the studied metals, indicating that the exposed human population is assumed to be safe. Occasional high consumers of mollusks from the most contaminated sites may be at some health risk. Originality: The food production system and the environment are complex systems; this is crucial to understand when we consider ecosystems as a food source (i.e., marine ecosystems). Here we consider edible biomonitors, that are organisms that can have a dual function. They are food, and at the same time, if properly calibrated, they can act as indicators of environmental quality. This study is the first to investigate relevant essential and non-essential trace metal content in two edible mollusks from the Beagle Channel in a long-term survey (2005 → 2012). The information variety was high; approximately thirteen thousand determinations were conducted to support the risk assessment for mollusk consumption. Other aspects connected with the health risks and the uncertainty factors related to the presence of essential and non-essential minerals in edible mollusks as well as the use of the MBS are also discussed.


Subject(s)
Environmental Monitoring/methods , Food Contamination , Gastropoda/chemistry , Metals, Heavy/chemistry , Mytilus/chemistry , Water Pollutants, Chemical/chemistry , Animals , Argentina , Ecosystem , Metals, Heavy/metabolism , Oceans and Seas , Risk Assessment
11.
Environ Sci Pollut Res Int ; 24(9): 8852-8865, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28214938

ABSTRACT

In this study, we tested the aptitude of the gastropod mollusk Patella caerulea as biomonitor of elemental pollution in seawater of a central Tyrrhenian ecosystem (Pontine Islands archipelago and Lazio region coastal sites, Italy). Concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were measured in 120 individuals collected in six strategic locations in two sampling campaigns during 2011 and 2012. Samples of surrounding seawater were also collected in the same sites and tested for the same metals in order to obtain the respective concentration factors (CFs). Then, we analyzed the evolution of contamination in the selected sites and compared our results with the baseline levels (control charts) previously established for Tyrrhenian seas (Conti et al. Environ Sci Pollut R 22:3640-3651,2015). With this purpose, we defined six new variables (one for each metal) and then we applied multivariate statistics, i.e., cluster analysis and discriminant analysis on the principal component analysis factors in order to obtain more reliable results. Patella resulted to be a strong bioaccumulator of Cd (CFs = 8990) and a good accumulator of Cr, Pb, and Zn. The levels of the majority of metals (i.e., Cr, Cu, Ni, Pb, and Zn) in Patella decreased in the range from -13.06% of Zn to -42.51% of Ni in Fiumicino harbor, Anzio beach, and Ponza Harbor from 2011 to 2012. In general, the metal levels in these marine areas are low and within the previously established baseline ranges for Tyrrhenian Sea (control charts). Here, we found a not univocal trend of metal bioaccumulation patterns between the two sampling campaigns (2011-2012) in the selected sites. No one site resulted to be clearly more contaminated than another (i.e., harbor sites as expected). For instance, for Cd, we detected a relevant increase of its levels (+118%) in the harbors and Anzio beach sites from 2011 to 2012; however, they remained at lower levels of the lower limit (Q 2.5) of the control chart. Higher Pb levels with respect to the baseline values were observed for the majority of samples in the Ponza Cala Fonte site. Patella confirmed its usefulness as a cosmopolitan trace metal biomonitor in marine Mediterranean areas. The possibility of employing these results as a baseline level for comparative purposes in other marine areas is fully debated.


Subject(s)
Environmental Monitoring/methods , Gastropoda/chemistry , Metals, Heavy/analysis , Seawater/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Islands , Italy
12.
Environ Sci Pollut Res Int ; 23(7): 6574-83, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26637301

ABSTRACT

Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects.


Subject(s)
Environmental Monitoring/methods , Lichens/chemistry , Particulate Matter/analysis , Trace Elements/analysis , Volcanic Eruptions , Argentina , Atmosphere , Chile , Lichens/drug effects
13.
Environ Sci Pollut Res Int ; 22(5): 3640-51, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25253055

ABSTRACT

In this study, we investigated Cd, Cr, Cu, Pb, and Zn in the seagrass Posidonia oceanica (L.) Delile leaves and in the brown algae Cystoseira sp. sampled along a 280-km transect in the Tyrrhenian Sea, from the Ustica to Linosa Islands (Sicily, Italy) with the aim to determine their control charts (baseline levels). By applying the Johnson's (Biometrika 36:149-175, 1949) probabilistic method, we determined the metal concentration overlap ranges in a group of five biomonitors. Here, we propose the use of the indexes of bioaccumulation with respect to the lowest (L'i) and the highest (L i) extreme values of the overlap metal concentration ranges. These indexes allow the identification of the most opportune organism (or a suite of them) to better managing particular environmental conditions. Posidonia leaves have generally high L i indexes for Cd, Cu, Pb, and Zn, and this suggests its use as biomonitor for baseline marine areas. Our results confirm the high aptitude of Patella as a good biomonitor for Cd levels in seawater. From this study, Ustica resulted with higher levels of Cd, Cu, Pb, and Zn than the other Sicilian Islands.


Subject(s)
Alismatales/chemistry , Metals, Heavy/analysis , Phaeophyceae/chemistry , Seawater/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Plant Leaves/chemistry , Quality Control , Sicily
14.
Chem Cent J ; 8: 44, 2014.
Article in English | MEDLINE | ID: mdl-25057287

ABSTRACT

BACKGROUND: The levels of 19 elements (As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Se, Tl, U, V, Zn) from sixteen different Argentine production sites of unifloral [eucalyptus (Eucaliptus rostrata), chilca (Baccharis salicifolia), Algarrobo (Prosopis sp.), mistol (Ziziphus mistol) and citric] and multifloral honeys were measured with the aim to test the quality of the selected samples. Typical quality parameters of honeys were also determined (pH, sugar content, moisture). Mineral elements were determined by using inductively coupled plasma mass spectrometer (ICP-MS DRC). We also evaluated the suitability of honey as a possible biomonitor of environmental pollution. Thus, the sites were classified through cluster analysis (CA) and then pattern recognition methods such as Principal Component Analysis (PCA) and discriminant analysis (DA) were applied. RESULTS: MEAN VALUES FOR QUALITY PARAMETERS WERE: pH, 4.12 and 3.81; sugar 82.1 and 82.0 °brix; moisture, 16.90 and 17.00% for unifloral and multifloral honeys respectively. The water content showed good maturity. Likewise, the other parameters confirmed the good quality of the honeys analysed. Potassium was quantitatively the most abundant metal, accounting for 92,5% of the total metal contents with an average concentration of 832.0 and 816.2 µg g(-1) for unifloral and multifloral honeys respectively. Sodium was the second most abundant major metal in honeys with a mean value of 32.16 and 33.19 µg g(-1) for unifloral and multifloral honeys respectively. Mg, Ca, Fe, Mn, Zn and Cu were present at low-intermediate concentrations. For the other 11 trace elements determined in this study (As, Be, Cd, Co, Cr, Ni, Pb, Se, Tl, U and V), the mean concentrations were very low or below of the LODs. The sites were classified through CA by using elements' and physicochemical parameters data, then DA on the PCA factors was applied. Dendrograms identified three main groups. PCA explained 52.03% of the total variability with the first two factors. CONCLUSIONS: In general, there are no evidences of pollution for the analysed honeys. The analytical results obtained for the Argentine honeys indicate the products' high quality. In fact, most of the toxic elements were below LODs. The chemometric analysis combining CA, DA and PCA showed their aptness as useful tools for honey's classification. Eventually, this study confirms that the use of honey as biomonitor of environmental contamination is not reliable for sites with low levels of contamination.

16.
Dose Response ; 10(3): 405-14, 2012.
Article in English | MEDLINE | ID: mdl-22942873

ABSTRACT

Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure.

17.
Ecotoxicology ; 21(4): 1112-25, 2012 May.
Article in English | MEDLINE | ID: mdl-22350107

ABSTRACT

With the aim to evaluate the mollusk Nacella (P)magellanica as biomonitor of elemental pollution in seawater of the Beagle Channel, more than one hundred individuals of the gastropod were sampled, separated in viscera and muscle, and then examined with respect to the accumulation of Cd, Cr, Cu, Ni, Pb and Zn. Collection was performed in seven strategic locations along 170 km of the coastal area of the Beagle Channel (Tierra del Fuego, Argentina) in two campaigns during 2005 and 2007. Samples of surrounding seawater in the different sites were obtained and tested for the same metals as well. The accumulation capacity of Nacella (P)magellanica and thus its aptitude as biomonitor, was evaluated through the calculus of the preconcentration factors of the metals assayed. A discussion involving the comparison with other mollusks previously tested will be given. Several statistical approaches able to analyze data with environmental purposes were applied. Non parametric univariate tests such as Kruskal-Wallis and Mann-Whitney were carried out to assess the changes of the metal concentrations with time (2005 and 2007) in each location. Multivariate methods (linear discriminant analysis on PCA factors) were also applied to obtain a more reliable site classification. Johnson's probabilistic method was carried out for comparison between different geographical areas. The possibility of employing these results as heavy metals' background levels of seawater from the Beagle Channel will be debated.


Subject(s)
Environmental Monitoring/methods , Gastropoda/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Animals , Argentina , Ecosystem , Metals, Heavy/analysis , Seawater
18.
Environ Monit Assess ; 184(1): 527-38, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21409357

ABSTRACT

Lichen, Usnea barbata, transplants taken from Tierra del Fuego (south Patagonia, Argentina) were tested as potential biomonitors of atmospheric airborne deposition in an apparently pristine environment. In 2005, lichens were sampled in a reference site (n = 31) and transplanted in the northern Region of Tierra del Fuego. After, respectively, 1 month and 1 year of exposure, we collected them. The aim of the study was to determine the bioaccumulation of 26 elements in order to evaluate the background levels in the selected area. Samples were analyzed by the sector field inductively coupled plasma mass spectrometry. Discriminant analysis on principal component analysis factors was applied in order to explore the relationship among the different elements as far as time and spatial variation in transplants regards. The analysis was tested by Monte Carlo test based on 999 replicates. The most important contamination source resulted to be the atmospheric soil particle deposition. Furthermore, the results were compared with those obtained from the lichens collected in central and southern Tierra del Fuego. This study confirms the ability of U. barbata to reflect the background levels of the 26 elements in that environment. Compared with other background sites in the world, we did confirm that Tierra del Fuego lichens have a low content of the studied elements. Tierra del Fuego turned out not to be a pristine environment as supposed, but it can be considered as a reference basal ecosystem for useful comparisons among different geographical areas. These findings can be very relevant and useful for environmental conservation programs.


Subject(s)
Air Pollutants/chemistry , Environmental Monitoring/methods , Trace Elements/chemistry , Usnea/metabolism , Argentina , Atmosphere
19.
Environ Monit Assess ; 184(10): 6025-36, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22020392

ABSTRACT

The aim of this study is to present and to discuss some characteristics of recalcitrant organic matter mechanism and formation. These aggregates called mucilages that are produced by the degradation reactions of several algae, have been investigated by infrared (FTIR) spectroscopy. FTIR spectra of macroaggregates produced by different algal samples have been daily collected in order to investigate the steps of aggregation. Afterwards, they have been elaborated by means of Independent Component Analysis (ICA). ICA investigation of FTIR spectra showed that the global aggregation process of marine mucilage always consisted of two different phases or independent components (ICs). One IC is related to the first degradation step of algal cells leading to the production of mono and oligosaccharides with aminoacids and oligopeptides. The second IC is related to the polymerization of oligosaccharides with aminoacids and oligopeptides and to their interaction with less polar compounds such as lipids thus producing supramolecular structures. The emerging mechanisms of anomalous size aggregates of organic matter match those of natural organic matter aggregation. The approach we suggest is to use synthetic mucilages which allows to monitor the macroaggregates formation because it can hardly be performed by means of natural marine macroaggregates.


Subject(s)
Aquatic Organisms/physiology , Environmental Monitoring/methods , Seawater/chemistry , Adhesives/analysis , Italy , Mediterranean Sea , Microalgae/physiology , Spectroscopy, Fourier Transform Infrared , Water Pollution/statistics & numerical data
20.
Ecotoxicology ; 20(6): 1341-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21544557

ABSTRACT

In order to test the aptitude of individuals of Mytilus chilensis as biomonitors of heavy metals pollution in seawater, several samples of this mollusk together with surrounding seawater samples were collected along 170 km of the coastal area of the Beagle Channel (Tierra del Fuego, Argentina) in 2005 and 2007. The study, performed in seven locations strategically selected, involved the determination of Cd, Cr, Cu, Ni, Pb and Zn in seawaters and mollusks by atomic absorption spectrometry (AAS) and the calculation of the respective concentration factors (CFs). Obtained data were standardized and analyzed by multivariate techniques in order to establish differences between sampling sites and periods. Obtained results will be shown and the bioaccumulation ability of M. chilensis will be evaluated by comparison with results obtained for Mytilus species in different geographical marine areas. A fully discussion on the possibility of employing the results as background levels for comparative purposes in other marine waters of the world will be provided. The possible harm derived from human consumption of these mollusks will be also assessed.


Subject(s)
Metals/metabolism , Mytilus/metabolism , Water Pollutants, Chemical/metabolism , Animals , Argentina , Environmental Monitoring , Seawater/chemistry , Water Pollution, Chemical/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL