Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
bioRxiv ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39131289

ABSTRACT

Genetic variants in TRIO are associated with neurodevelopmental disorders (NDDs) including schizophrenia (SCZ), autism spectrum disorder (ASD) and intellectual disability. TRIO uses its two guanine nucleotide exchange factor (GEF) domains to activate GTPases (GEF1: Rac1 and RhoG; GEF2: RhoA) that control neuronal development and connectivity. It remains unclear how discrete TRIO variants differentially impact these neurodevelopmental events. Here, we investigate how heterozygosity for NDD-associated Trio variants - +/K1431M (ASD), +/K1918X (SCZ), and +/M2145T (bipolar disorder, BPD) - impact mouse behavior, brain development, and synapse structure and function. Heterozygosity for different Trio variants impacts motor, social, and cognitive behaviors in distinct ways that align with clinical phenotypes in humans. Trio variants differentially impact head and brain size with corresponding changes in dendritic arbors of motor cortex layer 5 pyramidal neurons (M1 L5 PNs). Although neuronal structure was only modestly altered in the Trio variant heterozygotes, we observe significant changes in synaptic function and plasticity. We also identified distinct changes in glutamate synaptic release in +/K1431M and +/M2145T cortico-cortical synapses. The TRIO K1431M GEF1 domain has impaired ability to promote GTP exchange on Rac1, but +/K1431M mice exhibit increased Rac1 activity, associated with increased levels of the Rac1 GEF Tiam1. Acute Rac1 inhibition with NSC23766 rescued glutamate release deficits in +/K1431M variant cortex. Our work reveals that discrete NDD-associated Trio variants yield overlapping but distinct phenotypes in mice, demonstrates an essential role for Trio in presynaptic glutamate release, and underscores the importance of studying the impact of variant heterozygosity in vivo.

2.
J Biol Chem ; 298(9): 102361, 2022 09.
Article in English | MEDLINE | ID: mdl-35963430

ABSTRACT

TRIO encodes a cytoskeletal regulatory protein with three catalytic domains-two guanine exchange factor (GEF) domains, GEF1 and GEF2, and a kinase domain-as well as several accessory domains that have not been extensively studied. Function-damaging variants in the TRIO gene are known to be enriched in individuals with neurodevelopmental disorders (NDDs). Disease variants in the GEF1 domain or the nine adjacent spectrin repeats (SRs) are enriched in NDDs, suggesting that dysregulated GEF1 activity is linked to these disorders. We provide evidence here that the Trio SRs interact intramolecularly with the GEF1 domain to inhibit its enzymatic activity. We demonstrate that SRs 6-9 decrease GEF1 catalytic activity both in vitro and in cells and show that NDD-associated variants in the SR8 and GEF1 domains relieve this autoinhibitory constraint. Our results from chemical cross-linking and bio-layer interferometry indicate that the SRs primarily contact the pleckstrin homology region of the GEF1 domain, reducing GEF1 binding to the small GTPase Rac1. Together, our findings reveal a key regulatory mechanism that is commonly disrupted in multiple NDDs and may offer a new target for therapeutic intervention for TRIO-associated NDDs.


Subject(s)
Monomeric GTP-Binding Proteins , Neurodevelopmental Disorders , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Guanine/metabolism , Humans , Monomeric GTP-Binding Proteins/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Spectrin/metabolism
3.
Biol Methods Protoc ; 7(1): bpab024, 2022.
Article in English | MEDLINE | ID: mdl-35087952

ABSTRACT

Guanine nucleotide exchange factors (GEFs) are enzymes that promote the activation of GTPases through GTP loading. Whole exome sequencing has identified rare variants in GEFs that are associated with disease, demonstrating that GEFs play critical roles in human development. However, the consequences of these rare variants can only be understood through measuring their effects on cellular activity. Here, we provide a detailed, user-friendly protocol for purification and fluorescence-based analysis of the two GEF domains within the protein, Trio. This analysis offers a straight-forward, quantitative tool to test the activity of GEF domains on their respective GTPases, as well as utilize high-throughput screening to identify regulators and inhibitors. This protocol can be adapted for characterization of other Rho family GEFs. Such analyses are crucial for the complete understanding of the roles of GEF genetic variants in human development and disease.

SELECTION OF CITATIONS
SEARCH DETAIL