Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Mar Pollut Bull ; 155: 111201, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32469751

ABSTRACT

Determining the overall effects of human activities on the estuaries, seas and coasts, as a precursor to marine management, requires quantifying three aspects. These are: (a) the area in which the human activities take place, (b) the area covered by the pressures generated by the activities on the prevailing habitats and species, in which pressures are defined as the mechanisms of change, and (c) the area over which any adverse effects occur. These features can be respectively termed the activities-footprints, the pressures-footprints and the effects-footprints. The latter in turn incorporates both the effects on the natural system and the effects on ecosystem services from which society extracts goods and benefits. This viewpoint article explains the rationale behind this typology and proposes definitions for each of these three types of footprints.


Subject(s)
Conservation of Natural Resources , Ecosystem , Human Activities , Humans , Oceans and Seas , Walking
2.
Sci Total Environ ; 724: 138118, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32247136

ABSTRACT

Ecosystem-based management requires an assessment of the cumulative effects of human pressures and environmental change. The operationalization and integration of cumulative effects assessments (CEA) into decision-making processes often lacks a comprehensive and transparent framework. A risk-based CEA framework that divides a CEA in risk identification, risk analysis and risk evaluation, could structure such complex analyses and facilitate the establishment of direct science-policy links. Here, we examine carefully the operationalization of such a risk-based CEA framework with the help of eleven contrasting case studies located in Europe, French Polynesia, and Canada. We show that the CEA framework used at local, sub-regional, and regional scales allowed for a consistent, coherent, and transparent comparison of complex assessments. From our analysis, we pinpoint four emerging issues that, if accurately addressed, can improve the take up of CEA outcomes by management: 1) framing of the CEA context and defining risk criteria; 2) describing the roles of scientists and decision-makers; 3) reducing and structuring complexity; and 4) communicating uncertainty. Moreover, with a set of customized tools we describe and analyze for each case study the nature and location of uncertainty as well as trade-offs regarding available knowledge and data used for the CEA. Ultimately, these tools aid decision-makers to recognize potential caveats and repercussions of management decisions. One key recommendation is to differentiate CEA processes and their context in relation to governance advice, marine spatial planning or regulatory advice. We conclude that future research needs to evaluate how effective management measures are in reducing the risk of cumulative effects. Changing governance structures takes time and is often difficult, but we postulate that well-framed and structured CEA can function as a strategic tool to integrate ecosystem considerations across multiple sectorial policies.

3.
Sci Total Environ ; 648: 293-305, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30121029

ABSTRACT

Marine policy and management has to cope with a plethora of human activities that cause pressures leading to changes to the natural and human systems. Accordingly, it requires many policy and management responses to address traditional, cultural, social, ecological, technical, and economic policy objectives. Because of this, we advocate that a fully-structured approach using the IEC/ISO 31010 Bow-tie analysis will allow all elements to be integrated for a cost-effective system. This industry-standard system, described here with examples for the marine environment, will fulfil many of the demands by the users and uses of the marine system and the regulators of those users and uses. It allows for bridging several aspects: the management and environmental sciences, the management complexity and governance demands, the natural and social sciences and socio-economics and outcomes. Most importantly, the use of the Bow-tie approach bridges systems analysis and ecosystem complexity. At a time when scientific decisions in policy making and implementation are under question, we conclude that it provides a rigorous, transparent and defendable system of decision-making.

4.
J Environ Manage ; 226: 340-346, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30130703

ABSTRACT

Maintaining the current state of ecosystem services from freshwater and marine ecosystems around the world is at risk. Cumulative effects of multiple human pressures on ecosystem components and functions are indicative of residual pressures that "fall through" the cracks of current industry sector management practices. Without an understanding of the level of residual pressures generated by these measures, we are unlikely to reconcile the root causes of ecosystem effects to improve these management practices to reduce their residual pressures. In this paper, we present a new modelling framework that combines a qualitative and quantitative assessments of the effectiveness of the measures used in the daily operations of industry sectors to predict their residual pressure that is delivered to the ecosystem. The predicted residual pressure can subsequently be used as an input variable for ecosystem models. We combine the Bow-tie analysis of the measures with a Bayesian belief network to quantify the effectiveness of the measures and predict the residual pressures.


Subject(s)
Bayes Theorem , Conservation of Natural Resources , Fresh Water , Ecosystem , Humans , Industry
5.
Mar Pollut Bull ; 123(1-2): 28-33, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28779886

ABSTRACT

The United Nations Sustainable Development Goals (SDG), adopted in September 2015, are accompanied by targets which have to be met individually and collectively by the signatory states. SDG14 Life Below Water aims to lay the foundation for the integrated and sustainable management of the oceans. However, any environmental management has to be based around targets which are SMART - specific, measurable, achievable, realistic and time bounded - otherwise it is not possible to determine whether management actions are successful and achieve the desired aims. The discussion here shows that many of the targets adopted for SDG14, and especially a detailed analysis of Target 1, are aspirational rather than fully quantified. In order to move towards making the targets operational, we advocate merging the language of environmental management with that used by industry for linking risks to the environment, management performance and ensuing controls. By adopting an approach which uses Key Performance Indicators ('KPIs'), Key Risk Indicators ('KRIs') and Key Control Indicators ('KCIs'), we advocate that a degree of rigour leading to defendable actions can be brought to marine management.


Subject(s)
Conservation of Natural Resources , Oceans and Seas , Goals , United Nations
7.
Mar Environ Res ; 86: 56-69, 2013 May.
Article in English | MEDLINE | ID: mdl-23535014

ABSTRACT

An ecosystem approach to marine spatial planning (MSP) promotes sustainable development by organizing human activities in a geo-spatial and temporal context. (1) This study develops and tests a spatially explicit risk assessment to support MSP. Using the German exclusive economic zone (EEZ) of the North Sea as a case study area, current and future spatial management scenarios are assessed. (2) Different tools are linked in order to carry out a comprehensive spatial risk assessment of current and future spatial management scenarios for ecologic and economic ecosystem components, i.e. Pleuronectes platessa nursery grounds. With the identification of key inputs and outputs the suitability of each tool is tested. (3) Here, the procedure as well as the main findings of the spatially explicit risk approach are summarised to demonstrate the applicability of the framework and the need for an ecosystem approach to risk management techniques using geo-spatial tools.


Subject(s)
Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/methods , Ecosystem , Fisheries/methods , Flounder/growth & development , Animals , Geographic Information Systems , Germany , North Sea , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL