Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
bioRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39229204

ABSTRACT

Therapeutic resistance in cancer significantly contributes to mortality, with many patients eventually experiencing recurrence after initial treatment responses. Recent studies have identified therapy-resistant large polyploid cancer cells in patient tissues, particularly in late-stage prostate cancer, linking them to advanced disease and relapse. Here, we analyzed bone marrow aspirates from 44 advanced prostate cancer patients and found the presence of circulating tumor cells with increased genomic content (CTC-IGC) was significantly associated with poorer progression-free survival. Single cell copy number profiling of CTC-IGC displayed clonal origins with typical CTCs, suggesting complete polyploidization. Induced polyploid cancer cells from PC3 and MDA-MB-231 cell lines treated with docetaxel or cisplatin were examined through single cell DNA sequencing, RNA sequencing, and protein immunofluorescence. Novel RNA and protein markers, including HOMER1, TNFRSF9, and LRP1, were identified as linked to chemotherapy resistance. These markers were also present in a subset of patient CTCs and associated with recurrence in public gene expression data. This study highlights the prognostic significance of large polyploid tumor cells, their role in chemotherapy resistance, and their expression of markers tied to cancer relapse, offering new potential avenues for therapeutic development.

2.
Endocr Relat Cancer ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39324992

ABSTRACT

Hormone therapy (HT) to treat prostate cancer is reported to cause adverse changes in body composition. Clinically, interpatient body composition changes are heterogeneous, but the biologic and clinical determinants of body composition toxicity are unknown. Herein, we test the hypothesis that inherited polymorphisms in steroidogenic genes are associated with differential change in body composition after HT. Men with biochemically recurrent prostate cancer (BCR) who received 8 months of LHRH analog (LHRHa) +/- abiraterone acetate (AAP) were eligible if they had: 1) CT imaging of L3 prior to and after treatment, and 2) nucleated cells collected. Cardiometabolic co-morbidities were retrospectively extracted. Body composition was measured using an AI-based segmentation tool. Germline DNA whole exome or genome sequencing was performed. In 162 men treated with 8 months of HT, median skeletal muscle mass (SMMi) loss was 6.6% and subcutaneous adipose gain was 12.3%. Men with type 2 diabetes had higher loss of SMMi after treatment (-11.1% vs. -6.3%, p = 0.003). For the 150 men with germline NGS, SRD5A2 rs523349 genotype was associated with differential loss in skeletal muscle density after HT, (-1.3% vs. -7.1%, p=0.04). In addition, HSD3B1 rs104703 genotype was associated with decreased baseline visceral adipose tissue (63.0 cm2/m2 vs. 77.9, p=0.05). In men with BCR, HT induced notable loss of skeletal muscle and increased subcutaneous adipose tissue. An inherited polymorphism in SRD5A2 and T2DM were associated with differential skeletal muscle toxicity. These findings suggest that inherited polymorphisms may contribute to the body composition toxicity observed with HT.

3.
Article in English | MEDLINE | ID: mdl-39289537

ABSTRACT

BACKGROUND: Staging patients with high-risk prostate cancer (HRPCa) with conventional imaging of computed tomography (CT) and bone scintigraphy (BS) is suboptimal. Therefore, we aimed to compare the accuracy of whole-body magnetic resonance imaging (WBMRI) with conventional imaging to stage patients with HRPCa. METHODS: We prospectively enrolled patients with newly diagnosed HRPCa (prostate-specific antigen ≥20 ng/ml and/or Grade Group ≥4). Patients underwent BS, CT of the abdomen and pelvis, and WBMRI within 30 days of evaluation. The primary endpoint was the diagnostic performances of detecting metastatic disease to the lymph nodes and bone for WBMRI and conventional imaging. The reference standard was defined by histopathology or by all available clinical information at 6 months of follow-up. To compare diagnostic tests, Exact McNemar's test and area under the curve (AUC) of the receiver operating characteristics curves were utilized. RESULTS: Among 92 patients enrolled, 15 (16.3%) and 8 (8.7%) patients were found to have lymphatic and bone metastases, respectively. The sensitivity, specificity, and accuracy of WBMRI in detecting lymphatic metastases were 0.60 (95% confidence interval 0.32-0.84), 0.84 (0.74-0.92), and 0.80 (0.71-0.88), respectively, while CT were 0.20 (0.04-0.48), 0.92 (0.84-0.97), and 0.80 (0.71-0.88). The sensitivity, specificity, and accuracy of WBMRI to detect bone metastases were 0.25 (0.03-0.65), 0.94 (0.87-0.98), and 0.88 (0.80-0.94), respectively, while CT and BS were 0.12 (0-0.53), 0.94 (0.87-0.98), and 0.87 (0.78-0.93). For evaluating lymphatic metastases, WBMRI demonstrated a higher sensitivity (p = 0.031) and discrimination compared to CT (0.72 versus 0.56, p = 0.019). CONCLUSIONS: For staging patients with HRPCa, WBMRI outperforms CT in the detection of lymphatic metastases and performs as well as CT and BS in the detection of bone metastases. Further studies are needed to assess the cost effectiveness of WBMRI and the utility of combined PSMA PET and WBMRI.

4.
Clin Transl Radiat Oncol ; 48: 100822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39188999

ABSTRACT

Background: Proton therapy (PT) has unique biologic properties with excellent clinical outcomes for the management of localized prostate cancer. Here, we aim to characterize the toxicity of PT for patients with localized prostate cancer and propose mitigation strategies using a large institutional database. Methods: We reviewed medical records of 2772 patients with localized prostate cancer treated with definitive PT between May 2006 through January 2020. Disease risk was stratified according to National Comprehensive Cancer Network guidelines as low [LR, n = 640]; favorable-intermediate [F-IR, n = 849]; unfavorable-intermediate [U-IR, n = 851]; high [HR, n = 315]; or very high [VHR, n = 117]. Descriptive statistics and Kaplan-Meier estimates assessed toxicity and freedom from biochemical relapse (FFBR). Results: Median follow-up was 7.0 years. The median dose was 78 Gy(RBE)(range: 72-79.2 Gy) in 2.0 Gy(RBE) fractions; 63 % of patients received 78 Gy(RBE) in 39 fractions, and 29 % received 76 Gy(RBE) in 38 fractions. Overall rates of late grade ≥3 GU and GI toxicity were 0.87 % and 1.01 %, respectively. Two patients developed grade 4 late GU toxicity and seven patients with grade 4 late GI toxicity. All patients experiencing severe late grade 4 toxicities were treated to 78 Gy(RBE) in 39 fractions with 80 Gy(RBE) dose to the anterior rectal wall and/or bladder neck. The 10-year FFBR rates for patients with LR to U-IR disease were compared between those treated with 76 and 78 Gy(RBE); the rates were 94.5 % (95 % confidence interval [CI] 92.4-96.0 %) and 93.2 % (95 % CI 91.3-95.7 %), respectively (log-rank p = 0.22). Conclusions: Proton therapy is associated with low rates of late grade ≥3 GU and GI toxicity. While rare, late grade 4 toxicities occurred in nine (0.3 %) patients. De-escalation to a total dose of 76 Gy(RBE) yields excellent clinical outcomes for patients with LR to U-IR disease with the potential for significant reductions in grade ≥3 late toxicity.

5.
Proc Natl Acad Sci U S A ; 121(33): e2402903121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39102549

ABSTRACT

Immune checkpoint therapy has limited efficacy for patients with bone-metastatic castration-resistant prostate cancer (bmCRPC). To improve immunotherapy for bmCRPC, we aimed to identify the mechanism of bmCRPC-induced changes in the immune microenvironment. Among bmCRPC patients, higher levels of a 32-gene M2-like macrophage signature in bone metastasis samples correlated with shorter overall survival. Immunohistochemistry showed that CD206-positive (CD206+) macrophages were enriched in bmCRPC bone biopsy specimens compared with primary tumors or lymph node metastases. In preclinical osteogenic prostate cancer (Pca) xenograft models, CD206+ macrophages were recruited to areas with tumor-induced bone. RNA sequencing (RNAseq) analysis showed higher expression of an M2-like gene signature, with activated canonical and noncanonical Wnt pathways, in tumor-associated macrophages isolated from osteogenic tumors (bone-TAMs) than in TAMs isolated from nonosteogenic tumors (ctrl-TAMs). Mechanistic studies showed that endothelial cells (ECs) that had undergone EC-to-osteoblast (EC-to-OSB) transition, the precursors of tumor-induced OSBs, produced paracrine factors, including Wnts, CXCL14, and lysyl oxidase, which induced M2 polarization and recruited M2-like TAMs to the bone-tumor microenvironment (bone-TME). Bone-TAMs suppressed CD8+ T cells' proliferation and cytolytic activity, and these effects were partially reversed by treating bone-TAMs with Wnt inhibitors. Genetic or pharmacological inhibition of Pca-induced EC-to-OSB transition reduced the levels of M2-like macrophages in osteogenic tumors. Our study demonstrates that Pca-induced EC-to-OSB transition drives immunosuppression in the bone-TME, suggesting that therapies that reduce Pca-induced bone formation may improve immunotherapeutic outcomes for bmCRPC.


Subject(s)
Bone Neoplasms , Endothelial Cells , Macrophages , Osteoblasts , Tumor Microenvironment , Wnt Signaling Pathway , Male , Tumor Microenvironment/immunology , Humans , Bone Neoplasms/immunology , Bone Neoplasms/secondary , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Animals , Mice , Macrophages/metabolism , Macrophages/immunology , Endothelial Cells/metabolism , Endothelial Cells/immunology , Osteoblasts/metabolism , Osteoblasts/immunology , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
6.
Cancers (Basel) ; 16(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39061241

ABSTRACT

Radium 223 (Ra-223) is an α-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223.

7.
Article in English | MEDLINE | ID: mdl-39019979

ABSTRACT

BACKGROUND: Androgen signaling is central to prostate cancer and men's health. Prior data indicates that increasing body fat is unfavorable in the localized setting yet associated with favorable outcomes in men with metastatic disease. Understanding the biological links between adiposity and prostate cancer may optimize the therapeutic index with ASI. We hypothesized that host adiposity and androgen synthesis are linked to the efficacy and toxicity of ASI for men with metastatic castration-resistant prostate cancer (mCRPC). METHODS: A post-hoc analysis was done of NCT02703623 where men with mCRPC (n = 186) were treated for 8 weeks with abiraterone acetate, prednisone, and apalutamide (AAPA), and a satisfactory response was defined as a PSA decline >50%. Body composition was measured on baseline CT scans. Germline DNA WES was performed with a focus on variants in steroidogenic genes. Adipokine levels were measured in pre-treatment plasma. RESULTS: Germline polymorphisms in 3 genes involved in androgen synthesis (AKR1C3 rs12529, CYP17A1 rs6162, SRD5A2 rs523349) were associated with differences in body composition at baseline on ADT alone (prior to receipt of AAPA). Elevated subcutaneous adipose tissue index (SATi, p = 0.02), visceral adipose tissue index (VATi, p = 0.03), and BMI (p = 0.04) were associated with satisfactory response to AAPA. Leptin had positive correlation with VATi (r = 0.47) and SATi (r = 0.48). CONCLUSION: Inherited polymorphisms in androgen synthesis correlated with differences in body composition after exposure to ADT and warrant further investigation as candidate markers for body composition toxicity. Elevated subcutaneous and visceral adiposity were associated with improved response to ASI.

8.
J Urol ; 211(6): 784-793, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573872

ABSTRACT

PURPOSE: We initiated a biomarker-informed preoperative study of infigratinib, a fibroblast growth factor receptor (FGFR) inhibitor, in patients with localized upper tract urothelial carcinoma (UTUC), a population with high unmet needs and tumor with a high frequency of FGFR3 alterations. MATERIALS AND METHODS: Patients with localized UTUC undergoing ureteroscopy or nephroureterectomy/ureterectomy were enrolled on a phase 1b trial (NCT04228042). Once-daily infigratinib 125 mg by mouth × 21 days (28-day cycle) was given for 2 cycles. Tolerability was monitored by Bayesian design and predefined stopping boundaries. The primary endpoint was tolerability, and the secondary endpoint was objective response based on tumor mapping, done after endoscopic biopsy and post-trial surgery. Total planned enrollment: 20 patients. Targeted sequencing performed using a NovaSeq 6000 solid tumor panel. RESULTS: From May 2021 to November 2022, 14 patients were enrolled, at which point the trial was closed due to termination of all infigratinib oncology trials. Two patients (14.3%) had treatment-terminating toxicities, well below the stopping threshold. Responses occurred in 6 (66.7%) of 9 patients with FGFR3 alterations. Responders had median tumor size reduction of 67%, with 3 of 5 patients initially planned for nephroureterectomy/ureterectomy converted to ureteroscopy. Median follow-up in responders was 24.7 months (14.9-28.9). CONCLUSIONS: In this first trial of targeted therapy for localized UTUC, FGFR inhibition was well tolerated and had significant activity in FGFR3 altered tumors. Renal preservation was enabled in a substantial proportion of participants. These data support the design of a biomarker-driven phase 2 trial of FGFR3 inhibition in this population with significant unmet clinical needs.


Subject(s)
Carcinoma, Transitional Cell , Ureteral Neoplasms , Humans , Male , Female , Aged , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/surgery , Carcinoma, Transitional Cell/pathology , Carcinoma, Transitional Cell/genetics , Middle Aged , Ureteral Neoplasms/drug therapy , Ureteral Neoplasms/surgery , Ureteral Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Ureteroscopy/adverse effects , Nephroureterectomy , Aged, 80 and over , Treatment Outcome , Phenylurea Compounds , Pyrimidines
9.
Clin Cancer Res ; 30(13): 2751-2763, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38683200

ABSTRACT

PURPOSE: To determine the efficacy and safety of risk-adapted combinations of androgen signaling inhibitors and inform disease classifiers for metastatic castration-resistant prostate cancers. PATIENTS AND METHODS: In a modular, randomized phase II trial, 192 men were treated with 8 weeks of abiraterone acetate, prednisone, and apalutamide (AAPA; module 1) and then allocated to modules 2 or 3 based on satisfactory (≥50% PSA decline from baseline and <5 circulating tumor cell/7.5 mL) versus unsatisfactory status. Men in the former were randomly assigned to continue AAPA alone (module 2A) or with ipilimumab (module 2B). Men in the latter group had carboplatin + cabazitaxel added to AAPA (module 3). Optional baseline biopsies were subjected to correlative studies. RESULTS: Median overall survival (from allocation) was 46.4 [95% confidence interval (CI), 39.2-68.2], 41.4 (95% CI, 33.3-49.9), and 18.7 (95% CI, 14.3-26.3) months in modules 2A (n = 64), 2B (n = 64), and 3 (n = 59), respectively. Toxicities were within expectations. Of 192 eligible patients, 154 (80.2%) underwent pretreatment metastatic biopsies. The aggressive-variant prostate cancer molecular profile (defects in ≥2 of p53, RB1, and PTEN) was associated with unsatisfactory status. Exploratory analyses suggested that secreted phosphoprotein 1-positive and insulin-like growth factor-binding protein 2-positive macrophages, druggable myeloid cell markers, and germline pathogenic mutations were enriched in the unsatisfactory group. CONCLUSIONS: Adding ipilimumab to AAPA did not improve outcomes in men with androgen-responsive metastatic castration-resistant prostate cancer. Despite the addition of carboplatin + cabazitaxel, men in the unsatisfactory group had shortened survivals. Adaptive designs can enrich for biologically and clinically relevant disease subgroups to contribute to the development of marker-informed, risk-adapted therapy strategies in men with prostate cancer.


Subject(s)
Abiraterone Acetate , Antineoplastic Combined Chemotherapy Protocols , Prednisone , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/genetics , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Middle Aged , Prednisone/administration & dosage , Prednisone/therapeutic use , Abiraterone Acetate/therapeutic use , Abiraterone Acetate/administration & dosage , Thiohydantoins/administration & dosage , Thiohydantoins/therapeutic use , Thiohydantoins/adverse effects , Aged, 80 and over , Androgen Antagonists/therapeutic use , Carboplatin/administration & dosage , Carboplatin/therapeutic use , Ipilimumab/administration & dosage , Ipilimumab/therapeutic use , Taxoids
10.
Clin Cancer Res ; 30(10): 2272-2285, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38488813

ABSTRACT

PURPOSE: Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN: We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS: The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS: We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.


Subject(s)
Prostatic Neoplasms , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Male , Animals , Mice , Xenograft Model Antitumor Assays , Biomarkers, Tumor/genetics , Heterografts , Gene Expression Regulation, Neoplastic , Gene Expression Profiling
11.
Article in English | MEDLINE | ID: mdl-38388778

ABSTRACT

Combined androgen deprivation therapy (ADT) and radiotherapy (RT) improves outcomes for intermediate and high-risk prostate cancer. Treatment intensification with abiraterone acetate/prednisone (AAP) provides additional benefit for high-risk disease. We previously reported 3-year outcomes of a single-arm prospective multicenter trial (AbiRT trial) of 33 patients with unfavorable intermediate risk (UIR) and favorable high risk (FHR) prostate cancer undergoing short course, combination therapy with ADT, AAP, and RT. Here we report the final analysis demonstrating a high rate of testosterone recovery (97%) and excellent biochemical progression-free survival (97%) at 5 years. These data support comparative prospective studies of shorter, more potent ADT courses in favorable high-risk prostate cancer.

12.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38076845

ABSTRACT

Immune checkpoint therapy has limited efficacy for patients with bone metastatic castrate-resistant prostate cancer (bmCRPC). In this study, we revealed a novel mechanism that may account for the relative resistance of bmCRPC to immune checkpoint therapy. We found that prostate cancer (PCa)-induced bone via endothelial-to-osteoblast (EC-to-OSB) transition causes an ingress of M2-like macrophages, leading to an immunosuppressive bone tumor microenvironment (bone-TME). Analysis of a bmCRPC RNA-seq dataset revealed shorter overall survival in patients with an M2-high versus M2-low signature. Immunohistochemical (IHC) analysis showed CD206 + M2-like macrophages were enriched in bmCRPC specimens compared with primary tumors or lymph node metastasis. In osteogenic PCa xenografts, CD206 + macrophages were enriched adjacent to tumor-induced bone. FACS analysis showed an increase in CD206 + cells in osteogenic tumors compared to non-osteogenic tumors. Genetic or pharmacological inhibition of the EC-to-OSB transition reduced aberrant bone and M2-like macrophages in osteogenic tumors. RNAseq analysis of tumor-associated macrophages from osteogenic (bone-TAMs) versus non-osteogenic (ctrl-TAMs) tumors showed high expression of an M2-like gene signature, canonical and non-canonical Wnt pathways, and a decrease in an M1-like gene signature. Isolated bone-TAMs suppressed T-cell proliferation while ctrl-TAMs did not. Mechanistically, EC-OSB hybrid cells produced paracrine factors, including Wnts, CXCL14 and LOX, which induced M2 polarization and recruited M2-like TAMs to bone-TME. Our study thus links the unique EC-to-OSB transition as an "upstream" event that drives "downstream" immunosuppression in the bone-TME. These studies suggest that therapeutic strategies that inhibit PCa-induced EC-to-OSB transition may reverse immunosuppression to promote immunotherapeutic outcomes in bmCRPC. Significance: The insight that prostate cancer-induced bone generates an immunosuppressive bone tumor microenvironment offers a strategy to improve responses to immunotherapy approaches in patients with bone metastatic castrate-resistant prostate cancer.

13.
Cancers (Basel) ; 15(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136389

ABSTRACT

Aggressive-variant prostate cancers (AVPCs) are a subset of metastatic castrate-resistant prostate cancers (mCRPCs) characterized by defects in ≥ two of three of TP53, RB1, and PTEN (AVPCm), a profile linked to lineage plasticity, androgen indifference, and platinum sensitivity. Men with mCRPC undergoing biopsies for progression were assessed for AVPCm using immunohistochemistry (IHC), next-generation sequencing (NGS) of solid tumor DNA (stDNA), and NGS of circulating tumor DNA (ctDNA) assays in CLIA-certified labs. Biopsy characteristics, turnaround times, inter-reader concordance, and inter-assay concordance were assessed. AVPCm was detected in 13 (27%) patients via IHC, two (6%) based on stDNA, and seven (39%) based on ctDNA. The concordance of the IHC reads between pathologists was variable. IHC had a higher detection rate of AVPCm+ tumors with the shortest turnaround times. stDNA had challenges with copy number loss detection, limiting its detection rate. ctDNA detected the greatest proportion of AVPCm+ tumors but had a low tumor content in two thirds of patients. These data show the operational characteristics of AVPCm detection using various assays, and inform trial design using AVPCm as a criterion for patient selection or stratification.

14.
Cancer Res Commun ; 3(12): 2531-2543, 2023 12 13.
Article in English | MEDLINE | ID: mdl-37930121

ABSTRACT

Disease progression following androgen ablation was shown to be associated with upregulation of the glucocorticoid receptor (GR). Longitudinal monitoring of GR expression in circulating extracellular vesicles (EV) may reflect changes in the tumor cell and facilitates detection of acquired resistance. We utilized LNCaP, LREX cells and a patient-derived xenograft, MDA PDX 322-2-6a, for in vitro and in vivo experiments. Plasma-derived EVs were isolated from patients with localized high-risk prostate cancer undergoing androgen ablation. The mRNA levels of GR in EVs and their responsive genes were detected by transcriptome analysis, qRT-PCR and the protein levels by Western blot analysis. We detected changes in GR expression at mRNA and protein levels in EVs derived from LNCaP and LREX cells in in vitro studies. In in vivo experiments, LNCaP and the PDX MDA 322-2-6a-bearing mice were treated with enzalutamide. GR levels in plasma-derived EVs were increased only in those tumors that did not respond to enzalutamide. Treatment of mice bearing enzalutamide-resistant tumors with a GR inhibitor in combination with enzalutamide led to a transient pause in tumor growth in a subset of tumors and decreased GR levels intracellular and in plasma-derived EVs. In a subgroup of patients with high-risk localized prostate cancer treated with androgen signaling inhibition, GR was found upregulated in matching tissue and plasma EVs. These analyses showed that GR levels in plasma-derived EVs may be used for monitoring the transition of GR expression allowing for early detection of resistance to androgen ablation treatment. SIGNIFICANCE: Longitudinal monitoring of GR expression in plasma-derived EVs from patients with prostate cancer treated with androgen signaling inhibitors facilitates early detection of acquisition of resistance to androgen receptor signaling inhibition in individual patients.


Subject(s)
Biomarkers , Drug Resistance, Neoplasm , Extracellular Vesicles , Prostatic Neoplasms , Receptors, Glucocorticoid , Receptors, Glucocorticoid/blood , Receptors, Glucocorticoid/genetics , Extracellular Vesicles/metabolism , Biomarkers/blood , Signal Transduction , Humans , Animals , Mice , Male , Cell Line, Tumor , Phenylthiohydantoin/pharmacology , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation/drug effects , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Mifepristone/pharmacology
15.
Eur Urol Oncol ; 6(6): 611-620, 2023 12.
Article in English | MEDLINE | ID: mdl-37833193

ABSTRACT

BACKGROUND: Neoadjuvant chemotherapy (neoCTX) has been recommended as the optimal strategy in surgically resectable neuroendocrine carcinoma (NEC) of the urinary tract (NEC-URO). OBJECTIVE: To determine the systemic therapy regimen and timing, which are most active against NEC-URO. DESIGN, SETTING, AND PARTICIPANTS: We used our institutional historical clinical and pathological database to study 203 patients (cT2, 74%; cT3/4a, 22%; and cTx, 4%) with surgically resectable NEC-URO between November 1985 and May 2020. A total of 141 patients received neoCTX and 62 underwent initial radical surgery, 24 of whom received adjuvant CTX (adjCTX). INTERVENTION: Neoadjuvant CTX with etoposide/cisplatin (EP), an alternating doublet of ifosfamide/doxorubicin (IA) and EP, dose-dense methotrexate/vinblastine/doxorubicin/cisplatin (MVAC), gemcitabine/cisplatin (GC), or others. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Overall survival (OS), downstaging rate, and pathological complete response using a multivariable model adjusting for tumor- and patient-related factors. RESULTS AND LIMITATIONS: Downstaging rate was significantly improved with neoCTX versus initial surgery (49.6% vs 14.5%, p < 0.0001), stage cT2N0 versus cT3/4N0 (44% vs 25%, p = 0.01), or presence of carcinoma in situ (47% vs 28%, p = 0.01). Downstaging was greatest with IA/EP (65%) versus EP (39%), MVAC/GC (27%), or others (36%, p = 0.04). After adjusting for age and Eastern Cooperative Oncology Group performance status, IA/EP was still associated with improved downstaging (odds ratio = 3.7 [1.3-10.2], p = 0.01). At a median follow-up of 59.7 mo, 5-yr OS rates for neoCTX followed by surgery, surgery alone, and surgery followed by adjCTX were 57%, 22%, and 30%, respectively. An NEC regimen (IA/EP or EP) versus a urothelial regimen (MVAC/GC or others) was associated with improved survival (145.4 vs 42.5 mo, hazard ratio = 0.49, 95% confidence interval: 0.25-0.94). CONCLUSIONS: Neoadjuvant CTX remains the standard-of-care treatment for NEC-URO with an advantage for NEC regimens over traditional urothelial regimens. IA/EP improves pathological downstaging at the time of surgery compared with EP, but is reserved for younger and higher function patients. PATIENT SUMMARY: In this report, we looked at the outcomes from invasive neuroendocrine carcinoma of the urinary tract in a large US population. We found that the outcomes varied with treatment strategy. We conclude that the best outcomes are seen in patients treated with chemotherapy prior to surgery and regimens tailored to histology and tolerance.


Subject(s)
Carcinoma, Neuroendocrine , Urinary Bladder Neoplasms , Urinary Tract , Humans , Urinary Bladder Neoplasms/pathology , Cisplatin/therapeutic use , Gemcitabine , Deoxycytidine/therapeutic use , Urinary Tract/pathology , Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/surgery
16.
JAMA Oncol ; 9(11): 1587-1588, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37707804
17.
Clin Cancer Res ; 29(21): 4464-4478, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37581614

ABSTRACT

PURPOSE: Speckle-type POZ protein (SPOP) is important in DNA damage response (DDR) and maintenance of genomic stability. Somatic heterozygous missense mutations in the SPOP substrate-binding cleft are found in up to 15% of prostate cancers. While mutations in SPOP predict for benefit from androgen receptor signaling inhibition (ARSi) therapy, outcomes for patients with SPOP-mutant (SPOPmut) prostate cancer are heterogeneous and targeted treatments for SPOPmut castrate-resistant prostate cancer (CRPC) are lacking. EXPERIMENTAL DESIGN: Using in silico genomic and transcriptomic tumor data, proteomics analysis, and genetically modified cell line models, we demonstrate mechanistic links between SPOP mutations, STING signaling alterations, and PARP inhibitor vulnerabilities. RESULTS: We demonstrate that SPOP mutations are associated with upregulation of a 29-gene noncanonical (NC) STING (NC-STING) signature in a subset of SPOPmut, treatment-refractory CRPC patients. We show in preclinical CRPC models that SPOP targets and destabilizes STING1 protein, and prostate cancer-associated SPOP mutations result in upregulated NC-STING-NF-κB signaling and macrophage- and tumor microenvironment (TME)-facilitated reprogramming, leading to tumor cell growth. Importantly, we provide in vitro and in vivo mechanism-based evidence that PARP inhibitor (PARPi) treatment results in a shift from immunosuppressive NC-STING-NF-κB signaling to antitumor, canonical cGAS-STING-IFNß signaling in SPOPmut CRPC and results in enhanced tumor growth inhibition. CONCLUSIONS: We provide evidence that SPOP is critical in regulating immunosuppressive versus antitumor activity downstream of DNA damage-induced STING1 activation in prostate cancer. PARPi treatment of SPOPmut CRPC alters this NC-STING signaling toward canonical, antitumor cGAS-STING-IFNß signaling, highlighting a novel biomarker-informed treatment strategy for prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , NF-kappa B/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Transcription Factors/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mutation , Nucleotidyltransferases/genetics , Nucleotidyltransferases/therapeutic use , Tumor Microenvironment
18.
JAMA Oncol ; 9(6): 825-834, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37022702

ABSTRACT

Importance: Despite evidence demonstrating an overall survival benefit with up-front hormone therapy in addition to established synergy between hormone therapy and radiation, the addition of metastasis-directed therapy (MDT) to hormone therapy for oligometastatic prostate cancer, to date, has not been evaluated in a randomized clinical trial. Objective: To determine in men with oligometastatic prostate cancer whether the addition of MDT to intermittent hormone therapy improves oncologic outcomes and preserves time with eugonadal testosterone compared with intermittent hormone therapy alone. Design, Setting, Participants: The External Beam Radiation to Eliminate Nominal Metastatic Disease (EXTEND) trial is a phase 2, basket randomized clinical trial for multiple solid tumors testing the addition of MDT to standard-of-care systemic therapy. Men aged 18 years or older with oligometastatic prostate cancer who had 5 or fewer metastases and were treated with hormone therapy for 2 or more months were enrolled to the prostate intermittent hormone therapy basket at multicenter tertiary cancer centers from September 2018 to November 2020. The cutoff date for the primary analysis was January 7, 2022. Interventions: Patients were randomized 1:1 to MDT, consisting of definitive radiation therapy to all sites of disease and intermittent hormone therapy (combined therapy arm; n = 43) or to hormone therapy only (n = 44). A planned break in hormone therapy occurred 6 months after enrollment, after which hormone therapy was withheld until progression. Main Outcomes and Measures: The primary end point was disease progression, defined as death or radiographic, clinical, or biochemical progression. A key predefined secondary end point was eugonadal progression-free survival (PFS), defined as the time from achieving a eugonadal testosterone level (≥150 ng/dL; to convert to nanomoles per liter, multiply by 0.0347) until progression. Exploratory measures included quality of life and systemic immune evaluation using flow cytometry and T-cell receptor sequencing. Results: The study included 87 men (median age, 67 years [IQR, 63-72 years]). Median follow-up was 22.0 months (range, 11.6-39.2 months). Progression-free survival was improved in the combined therapy arm (median not reached) compared with the hormone therapy only arm (median, 15.8 months; 95% CI, 13.6-21.2 months) (hazard ratio, 0.25; 95% CI, 0.12-0.55; P < .001). Eugonadal PFS was also improved with MDT (median not reached) compared with the hormone therapy only (6.1 months; 95% CI, 3.7 months to not estimable) (hazard ratio, 0.32; 95% CI, 0.11-0.91; P = .03). Flow cytometry and T-cell receptor sequencing demonstrated increased markers of T-cell activation, proliferation, and clonal expansion limited to the combined therapy arm. Conclusions and Relevance: In this randomized clinical trial, PFS and eugonadal PFS were significantly improved with combination treatment compared with hormone treatment only in men with oligometastatic prostate cancer. Combination of MDT with intermittent hormone therapy may allow for excellent disease control while facilitating prolonged eugonadal testosterone intervals. Trial Registration: ClinicalTrials.gov Identifier: NCT03599765.


Subject(s)
Prostatic Neoplasms , Quality of Life , Male , Humans , Aged , Prostatic Neoplasms/pathology , Progression-Free Survival , Prostate/pathology , Testosterone/therapeutic use
19.
J Immunother Cancer ; 11(3)2023 03.
Article in English | MEDLINE | ID: mdl-36948506

ABSTRACT

BACKGROUND: The prostate tumor microenvironment (TME) is immunosuppressive, with few effector T cells and enrichment of inhibitory immune populations, leading to limited responses to treatments such as immune checkpoint therapies (ICTs). The immune composition of the prostate TME differs across soft tissue and bone, the most common site of treatment-refractory metastasis. Understanding immunosuppressive mechanisms specific to prostate TMEs will enable rational immunotherapy strategies to generate effective antitumor immune responses. Daratumumab (anti-CD38 antibody) and edicotinib (colony-stimulating factor-1 receptor (CSF-1R) inhibitor) may alter the balance within the prostate TME to promote antitumor immune responses. HYPOTHESIS: Daratumumab or edicotinib will be safe and will alter the immune TME, leading to antitumor responses in localized prostate cancer. PATIENTS AND METHODS: In this presurgical study, patients with localized prostate cancer received 4 weekly doses of daratumumab or 4 weeks of daily edicotinib prior to radical prostatectomy (RP). Treated and untreated control (Gleason score ≥8 in prostate biopsy) prostatectomy specimens and patient-matched pre- and post-treatment peripheral blood mononuclear cells (PBMCs) and bone marrow samples were evaluated. The primary endpoint was incidence of adverse events (AEs). The secondary endpoint was pathologic complete remission (pCR) rate. RESULTS: Twenty-five patients were treated (daratumumab, n=15; edicotinib, n=10). All patients underwent RP without delays. Grade 3 treatment-related AEs with daratumumab occurred in 3 patients (12%), and no ≥grade 3 treatment-related AEs occurred with edicotinib. No changes in serum prostate-specific antigen (PSA) levels or pCRs were observed. Daratumumab led to a decreased frequency of CD38+ T cells, natural killer cells, and myeloid cells in prostate tumors, bone marrow, and PBMCs. There were no consistent changes in CSF-1R+ immune cells in prostate, bone marrow, or PBMCs with edicotinib. Neither treatment induced T cell infiltration into the prostate TME. CONCLUSIONS: Daratumumab and edicotinib treatment was safe and well-tolerated in patients with localized prostate cancer but did not induce pCRs. Decreases in CD38+ immune cells were observed in prostate tumors, bone marrow, and PBMCs with daratumumab, but changes in CSF-1R+ immune cells were not consistently observed with edicotinib. Neither myeloid-targeted agent alone was sufficient to generate antitumor responses in prostate cancer; thus, combinations with agents to induce T cell infiltration (eg, ICTs) will be needed to overcome the immunosuppressive prostate TME.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Leukocytes, Mononuclear/pathology , Antineoplastic Agents/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Immunosuppressive Agents , Tumor Microenvironment
20.
Cancer Res ; 82(17): 3158-3171, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35802768

ABSTRACT

Metastatic prostate cancer in the bone induces bone-forming lesions that contribute to progression and therapy resistance. Prostate cancer-induced bone formation originates from endothelial cells (EC) that have undergone endothelial-to-osteoblast (EC-to-OSB) transition in response to tumor-secreted BMP4. Current strategies targeting prostate cancer-induced bone formation are lacking. Here, we show that activation of retinoic acid receptor (RAR) inhibits EC-to-OSB transition and reduces prostate cancer-induced bone formation. Treatment with palovarotene, an RARγ agonist being tested for heterotopic ossification in fibrodysplasia ossificans progressiva, inhibited EC-to-OSB transition and osteoblast mineralization in vitro and decreased tumor-induced bone formation and tumor growth in several osteogenic prostate cancer models, and similar effects were observed with the pan-RAR agonist all-trans-retinoic acid (ATRA). Knockdown of RARα, ß, or γ isoforms in ECs blocked BMP4-induced EC-to-OSB transition and osteoblast mineralization, indicating a role for all three isoforms in prostate cancer-induced bone formation. Furthermore, treatment with palovarotene or ATRA reduced plasma Tenascin C, a factor secreted from EC-OSB cells, which may be used to monitor treatment response. Mechanistically, BMP4-activated pSmad1 formed a complex with RAR in the nucleus of ECs to activate EC-to-OSB transition. RAR activation by palovarotene or ATRA caused pSmad1 degradation by recruiting the E3-ubiquitin ligase Smad ubiquitination regulatory factor1 (Smurf1) to the nuclear pSmad1/RARγ complex, thus blocking EC-to-OSB transition. Collectively, these findings suggest that palovarotene can be repurposed to target prostate cancer-induced bone formation to improve clinical outcomes for patients with bone metastasis. SIGNIFICANCE: This study provides mechanistic insights into how RAR agonists suppress prostate cancer-induced bone formation and offers a rationale for developing RAR agonists for prostate cancer bone metastasis therapy. See related commentary by Bhowmick and Bhowmick, p. 2975.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Bone Neoplasms/metabolism , Endothelial Cells/pathology , Humans , Male , Osteoblasts/metabolism , Prostatic Neoplasms/pathology , Receptors, Retinoic Acid/metabolism , Tretinoin/metabolism , Tretinoin/pharmacology , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL