Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Cytotherapy ; 23(1): 77-87, 2021 01.
Article in English | MEDLINE | ID: mdl-32718876

ABSTRACT

BACKGROUND AIMS: Adoptive cellular therapy with immune effector cells (IECs) has shown promising efficacy against some neoplastic diseases as well as potential in immune regulation. Both inherent variability in starting material and variations in cell composition produced by the manufacturing process must be thoroughly evaluated with a validated method established to quantify viable lymphocyte subtypes. Currently, commercialized immunophenotyping methods determine cell viability with significant errors in thawed products since they do not include any viability staining. We hereby report on the validation of a flow cytometry-based method for quantifying viable lymphocyte immunophenotypes in fresh and cryopreserved hematopoietic cellular products. METHODS: Using fresh or frozen cellular products and stabilized blood, we report on the validation parameters accuracy, uncertainty, precision, sensitivity, robustness and contamination between samples for quantification of viable CD3+, CD4+ T cells, CD8+ T cells, CD3-CD56+CD16+/- NK cells, CD19+ B cells and CD14+ monocytes of relevance to fresh and cryopreserved hematopoietic cellular products using the Cytomics FC500 cytometer (Beckman Coulter). RESULTS: The acceptance criteria set in the validation plan were all met. The method is able to accommodate the variability in absolute numbers of cells in starting materials collected or cryopreserved from patients or healthy donors (uncertainty of ≤20% at three different concentrations), stability over time (compliance over 3 years during regular inter-laboratory comparisons) and confidence in meaningful changes during cell processing and manufacturing (intra-assay and intermediate precision of 10% coefficient of variation). Furthermore, the method can accurately report on the efficacy of cell depletion since the lower limit of quantification was established (CD3+, CD4+ and CD8+ cells at 9, 8 and 8 cells/µL, respectively). The method complies with Foundation for the Accreditation of Cellular Therapy (FACT) standards for IEC, FACT-Joint Accreditation Committee of ISCT-EBMT (JACIE) hematopoietic cell therapy standards, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Q2(R1) and International Organization for Standardization 15189 standards. Furthermore, it complies with Ligand Binding Assay Bioanalytical Focus Group/American Association of Pharmaceutical Scientists, International Council for Standardization of Hematology/International Clinical Cytometry Society and European Bioanalysis Forum recommendations for validating such methods. CONCLUSIONS: The implications of this effort include standardization of viable cell immunophenotyping of starting material for cell manufacturing, cell selection and in-process quality controls or dosing of IECs. This method also complies with all relevant standards, particularly FACT-JACIE standards, in terms of enumerating and reporting on the viability of the "clinically relevant cell populations."


Subject(s)
B-Lymphocytes/classification , Cryopreservation , Flow Cytometry/methods , Flow Cytometry/standards , T-Lymphocyte Subsets/classification , Adult , B-Lymphocytes/metabolism , Humans , Immunophenotyping , Male , Reproducibility of Results
2.
Cytotherapy ; 19(12): 1501-1508, 2017 12.
Article in English | MEDLINE | ID: mdl-29037941

ABSTRACT

BACKGROUND: Cryopreserved hematopoietic progenitor cell (HPC) grafts are widely infused to patients with malignant and nonmalignant conditions. Despite reduction of immediate side effects linked to dimethyl sulfoxide (DMSO), cell debris-containing grafts and comparable hematopoietic engraftment between washed and unwashed cryopreserved products, bedside infusion of thawed HPC grafts is still preferred. Introduction of automated devices is important for standardization and consistency of graft manipulation. Additionally, these techniques are likely to be useful for the delivery of innovative cell-based medicinal products that are currently under development. METHODS: In this study, we evaluated three consecutive versions of the Lovo device (Fresenius Kabi) for automated washing of thawed HPC products. A total of 42 HPC products intended for destruction were used. Measured outcomes included viable CD34+ cell recovery, viability, total processing time and post-washing stability. RESULTS: Preliminary data using the prototype Lovo 0.0 to process a single HPC unit showed better recovery and viability of CD34+ cells using a two-cycle than a three-cycle wash, with >95% DMSO elimination. The Lovo 1.0 performed equally well. When simultaneously processing two HPC units, the upgraded Lovo 2.0 device demonstrated comparable CD34+ recovery, DMSO elimination efficiencies and time-saving capacity. Furthermore, washed cell products were stable for 4 hours at room temperature. DISCUSSION: Lovo device satisfies clinically relevant issues: ability to efficiently wash two HPC units simultaneously and compatibility with transport to nearby transplantation centers.


Subject(s)
Cryopreservation/instrumentation , Dimethyl Sulfoxide/isolation & purification , Hematopoietic Stem Cells/cytology , Antigens, CD34/metabolism , Cryopreservation/methods , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Humans , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL