Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
2.
J Dairy Sci ; 105(8): 6513-6526, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840409

ABSTRACT

Natural whey cultures (NWC) are undefined multiple-strain bacterial starter communities that can be affected by even small changes along the entire dairy chain. We applied a multidisciplinary approach to investigate how the addition of 2 mycotoxin-detoxifying agents [sodium smectite and lignocellulose-based material (B1); leonardite and betaine (B2)] to cow diets modified the microbiota of the NWC in manufacture of a Grana-like cheese. Microbiological and flow cytometry analyses showed that the content and viability of lactic acid bacteria (LAB) and the total whey microbiota were not affected by the detoxifying agents, and Streptococcus thermophilus, Lactobacillus helveticus, and Limosilactobacillus fermentum were the dominant taxa. Random amplified polymorphic DNA-PCR fingerprinting and metagenomic analysis highlighted differences in the bacterial community of the NWC and in the relative abundance of Bacteroidetes that increased when B1 and B2 were included in the diet. Two of 6 St. thermophilus biotypes were detected only in control samples; conversely, none of the Lb. helveticus biotypes found in control samples were isolated from B1 and B2. In vitro tests showed that the 2 binders did not significantly affect the development of St. thermophilus, but they stimulated the growth of Lb. helveticus strains recovered only from B1 and B2 NWC. The addition of binders in cow feed can affect the LAB biotypes present in NWC.


Subject(s)
Cheese , Lactobacillus helveticus , Mycotoxins , Animal Feed/analysis , Animals , Biodiversity , Cattle , Cheese/analysis , DNA, Bacterial/analysis , Food Microbiology , Mycotoxins/analysis , Whey/chemistry , Whey Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL