Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Bioresour Technol ; 393: 130019, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38000638

ABSTRACT

The use of microalgae-bacteria consortia (MBC) for wastewater treatment has garnered attention as their interactions impart greater environmental adaptability and stability compared with that obtained by only microalgae or bacteria use, thereby improving the efficiency of pollutant removal and bio-product productivity. Additionally, the value-added bio-products produced via biorefineries can improve economic competitiveness and environmental sustainability. Therefore, this review focuses on the interaction between microalgae and bacteria that leads to nutrient exchange, gene transfer and signal transduction to comprehensively understand the interaction mechanisms underlying their strong adaptability. In addition, it includes recent research in which MBC has been efficiently used to treat various wastewater. Moreover, the review summarizes the use of MBC-produced biomass in a biorefining context to produce biofuel, biomaterial, high-value bio-products and bio-fertilizer. Overall, more effort is needed to identify the symbiotic mechanism in MBC to provide a foundation for circular bio-economy and environmentally friendly development programmes.


Subject(s)
Microalgae , Water Purification , Wastewater , Bacteria , Biofuels , Biomass
2.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38084669

ABSTRACT

A sulphur-oxidizing and nitrogen-fixing bacterium, designated strain LS2T, was isolated from freshwater collected from the Pearl River in Guangzhou, PR China. The strain was an obligate chemolithoautotroph, utilizing reduced sulphur compounds (sulphide, sulphite, elemental sulphur, thiosulphate and tetrathionate) as energy sources and electron donors. Diazotrophic growth of strain LS2T was observed at 15-40 °C, pH 5-9, with a NaCl concentration range of 0-0.68 mol l-1 and with oxygen content higher than 21 %. The major cellular fatty acids were summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The DNA G+C content of the complete genome sequence was 60.7 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LS2T formed a lineage within the family Halothiobacillaceae, showing gene sequence identity of 96.8 % with its closest relative Halothiobacillus neapolitanus c2. The genome of strain LS2T contains multiple genes encoding sulphur-oxidizing enzymes that catalyse the oxidation of reduced sulphur compounds and an nif complex encoding enzymes for nitrogen fixation. In addition, the genome contains genes encoding cbb3-type cytochrome c oxidase, aa3-type cytochrome c oxidase, bd-type quinol oxidase and cytochrome o oxidase, which enable the survival strain LS2T under oxic and microaerophilic conditions. On the basis of phenotypic, genotypic and phylogenetic data, strain LS2T is considered to represent a novel species of the genus Halothiobacillus, for which the name Halothiobacillus diazotrophicus sp. nov. is proposed. The type strain is LS2T (=GDMCC 1.4095T=JCM 39442T).


Subject(s)
Fatty Acids , Halothiobacillus , Fatty Acids/chemistry , Halothiobacillus/genetics , Halothiobacillus/metabolism , Electron Transport Complex IV/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Sulfur/metabolism , Rivers/microbiology , Sulfur Compounds , Oxidation-Reduction , Nitrogen , Phospholipids/chemistry
3.
Food Chem ; 400: 134076, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36084596

ABSTRACT

Nonionic oil-in-water (O/W) nanoemulsion provides potential to stabilize hydrophobic bio-functional components in aqueous medium. Understanding safety of nanoemulsion droplets via investigating in vitro cell uptake and cellular substructural changes is important to achieve their practical applications. Herein, we developed a nonionic O/W nanoemulsion to stabilize representative bio-functional hydrophobic component of 9'-cis-bixin at pH 3-7 and ultraviolet (UV)-induced degradation at 365, 302, and 254 nm. In vitro cell uptake demonstrated that Caco-2 cells adequately enriched 9'-cis-bixin through fast uptake of nanoemulsion droplets within 15 min. However, excessive nanoemulsion droplets greatly decreased cell survival rate, which was due to the potential destruction of cellular substructures of mitochondria, nuclear membrane, and cell membrane. Lower nanoemulsion concentration provided no significant effects on Caco-2 cell survival. This work provided objective understanding on bio-functional component stability by nanoemulsion with in vitro safety evaluation.


Subject(s)
Water , Caco-2 Cells , Carotenoids , Emulsions/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Water/chemistry
4.
Bioresour Technol ; 292: 121938, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31398541

ABSTRACT

This study focused on the feasibility of using different concentrations of tofu wastewater (TW) as alternative media for Tribonema minus cultures to produce valuable biorefinery feedstock. T. minus grew mixotrophically in 100% TW with larger carbohydrate (30.99% of dry weight (DW)), protein (15.56% of DW) and chrysolaminarin (6.93% of DW) accumulations than that of in mBG-11 medium. The highest biomass concentration, 7.77 g/L, was achieved in 100% TW, and nutrient removal efficiencies of T. minus at this concentration ranged from 60.49% to 93.60%. Although smaller neutral lipid and palmitoleic acid amounts were detected in 100% TW, their productivities reached 133.77 and 67.19 mg/L/d, respectively, due to the largest biomass yield contribution, which were comparable to those in mBG-11 medium. These findings demonstrated that TW is a promising alternative medium, and an integrated TW biotransformation and biomass valorization process is proposed to achieve better economic performance and environmental sustainability.


Subject(s)
Microalgae , Soy Foods , Biomass , Biotransformation , Wastewater
5.
Bioresour Technol ; 270: 30-37, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30212771

ABSTRACT

This study aimed to evaluate the potential of six oleaginous eustigmatophytes for use as biorefinery feedstock for the co-production of palmitoleic acid (PA) and biodiesel under different initial nitrogen concentrations (INCs). Six eustigmatophytes were studied, the nitrogen deficiency strategy significantly stimulated the simultaneous hyper-accumulation of PA and lipids, and led to a desirable fatty acid profile (FAP), except in Vacuoliviride sp. and Nannochloropsis oculata. Particularly, Eustigmatos cf. polyphem exhibited great potential when supplied with 1 mM INC and yielded the highest PA (29.71% of dry weight (DW)) and lipid (72.01% of DW) contents, as their productivities increased to 96.26 and 232.79 mg/L/d, respectively. Furthermore, neutral lipids accounted for 91.82% of the total lipids and were rich in PA, and the favourable FAPs of C16-C18 (87.95%) and monounsaturated FAs (70.10%) ensured good biodiesel properties including the cetane number (55.69) and iodine value (92.81 gI2/100 g), and all met the standard requirements.


Subject(s)
Biofuels , Fatty Acids, Monounsaturated/metabolism , Gasoline , Microalgae/metabolism , Ascorbic Acid/biosynthesis , Fatty Acids/metabolism , Iodine/metabolism , Nitrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL