Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Environ Monit Assess ; 196(10): 907, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249123

ABSTRACT

This study aims to contribute to the understanding of the impact of climate change on bioclimatic zones in Morocco, providing insights into potential shifts and emphasizing the need for adaptation measures to protect vulnerable species and ecosystems. To achieve this, we utilized eight general circulation models (GCMs) to simulate climate conditions under two representative concentration scenarios (RCP4.5 and RCP8.5) for two future time points (2050 and 2070). The modeling of bioclimatic zone shifts was accomplished through the implementation of the random forest (RF) algorithm. Our findings indicate that the subhumid and humid areas are expected to experience the most significant shifts, particularly toward the semi-arid zone. Shifts from subhumid to semi-arid were the most pronounced, ranging from 17.91% (RCP8.5 in 2070) to 25.68% (RCP8.5 in 2050), while shifts from humid to semi-arid ranged from 10.16% (RCP4.5 in 2050) to 22.27% (RCP8.5 in 2070). The Saharan and arid zones are expected to be the least affected, with less than 1% and 11% of their original extent expected to change, respectively. Moreover, our results suggest that forest species such as Atlas cedar and oaks are among the most vulnerable to these shifts. Overall, this study highlights the inevitability of climate change's impact on Moroccan ecosystems and provides a basis for adaptation measures, especially considering the species adapted to the bioclimatic conditions that will dominate the respective affected regions.


Subject(s)
Climate Change , Environmental Monitoring , Morocco , Ecosystem , Climate Models , Spatio-Temporal Analysis , Forests
2.
PLoS One ; 19(6): e0305053, 2024.
Article in English | MEDLINE | ID: mdl-38924033

ABSTRACT

This study aims to assess the level of metal contamination and the ecological risk index at the abandoned Zaida Pb/Zn mining site in eastern Morocco and identify native plant species found on the site that can be used in site rehabilitation through phytoremediation strategies. Samples from seven native and abundant plant species at the site, along with their rhizospheric soils, were collected and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to determine the concentrations of various metal(loid)s, including As, Cu, Ni, Cd, Sb, Zn, and Pb. Indicators of soil pollution and ecological risks were also assessed, including the enrichment factor (EF), pollution index (PI), and ecological risk index (ERI). The Biological Accumulation Coefficient (BAC), Translocation Factor (TF), and Biological Concentration Factor (BCF) of plant samples were calculated. The results reveal polymetallic soil contamination, with notably higher concentrations of Pb, Cu and Zn, reaching respectively 5568 mg kg-1 DW, 152 mg kg-1 DW, and 148 mg kg-1 DW, indicating a significant potential ecological risk. The enrichment factor (EF) was also assessed for each metal(loid)s, and the results indicated that the metal contamination was of anthropogenic origin and linked to intensive mining activities in Zaida. These findings are supported by the pollution index (PI) ranging from 1.6 to 10.01, which reveals an extremely high metal(loid)s pollution level. None of the plant species exhibited a hyperaccumulation of metal(loid)s. However, Artemisia herba alba demonstrated a strong capacity to accumulate Pb in its aboveground parts, with a concentration of 468 mg kg-1 DW. Stipa tenacissima, Retama spherocarpa, and Astragalus armatus, showed a significant Pb accumulation in their roots reaching 280, 260, and 256 mg kg-1 DW.respectively. Based on BAC, TF, and BCF, Stipa tenacissima exhibited potential for Ni and Cd phytostabilization, as well as the ability for Zn phytoextraction. Additionally, Artemisia herba alba displayed the capability to phytoextract Cd and had a high propensity to translocate all the studied metal(loid)s. Astragalus armatus has the potential to be used in the phytostabilization of Zn and Ni, as well as for the phytoextraction of As and Sb. These native species from the Zaida site, although not hyperaccumulators, have the potential to contribute significantly to the phytoextraction or phytostabilization of potentially toxic elements (PTEs). Moreover, they can serve as vegetative cover to mitigate the erosion and dispersion of metal(loid)s.


Subject(s)
Biodegradation, Environmental , Lead , Mining , Plants , Soil Pollutants , Zinc , Morocco , Zinc/analysis , Zinc/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Lead/metabolism , Lead/analysis , Plants/metabolism , Plants/chemistry , Environmental Monitoring/methods , Biological Monitoring/methods , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL