Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Cancer Res ; 84(13): 2060-2072, 2024 07 02.
Article in English | MEDLINE | ID: mdl-39082680

ABSTRACT

Patient-derived xenografts (PDX) model human intra- and intertumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histologic imaging via hematoxylin and eosin (H&E) staining is routinely performed on PDX samples, which could be harnessed for computational analysis. Prior studies of large clinical H&E image repositories have shown that deep learning analysis can identify intercellular and morphologic signals correlated with disease phenotype and therapeutic response. In this study, we developed an extensive, pan-cancer repository of >1,000 PDX and paired parental tumor H&E images. These images, curated from the PDX Development and Trial Centers Research Network Consortium, had a range of associated genomic and transcriptomic data, clinical metadata, pathologic assessments of cell composition, and, in several cases, detailed pathologic annotations of neoplastic, stromal, and necrotic regions. The amenability of these images to deep learning was highlighted through three applications: (i) development of a classifier for neoplastic, stromal, and necrotic regions; (ii) development of a predictor of xenograft-transplant lymphoproliferative disorder; and (iii) application of a published predictor of microsatellite instability. Together, this PDX Development and Trial Centers Research Network image repository provides a valuable resource for controlled digital pathology analysis, both for the evaluation of technical issues and for the development of computational image-based methods that make clinical predictions based on PDX treatment studies. Significance: A pan-cancer repository of >1,000 patient-derived xenograft hematoxylin and eosin-stained images will facilitate cancer biology investigations through histopathologic analysis and contributes important model system data that expand existing human histology repositories.


Subject(s)
Deep Learning , Neoplasms , Humans , Animals , Mice , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/diagnostic imaging , Genomics/methods , Heterografts , Xenograft Model Antitumor Assays , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Image Processing, Computer-Assisted/methods
2.
Cancer Res Commun ; 4(6): 1430-1440, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38717161

ABSTRACT

The PI3K pathway regulates essential cellular functions and promotes chemotherapy resistance. Activation of PI3K pathway signaling is commonly observed in triple-negative breast cancer (TNBC). However previous studies that combined PI3K pathway inhibitors with taxane regimens have yielded inconsistent results. We therefore set out to examine whether the combination of copanlisib, a clinical grade pan-PI3K inhibitor, and eribulin, an antimitotic chemotherapy approved for taxane-resistant metastatic breast cancer, improves the antitumor effect in TNBC. A panel of eight TNBC patient-derived xenograft (PDX) models was tested for tumor growth response to copanlisib and eribulin, alone or in combination. Treatment-induced signaling changes were examined by reverse phase protein array, immunohistochemistry (IHC) and 18F-fluorodeoxyglucose PET (18F-FDG PET). Compared with each drug alone, the combination of eribulin and copanlisib led to enhanced tumor growth inhibition, which was observed in both eribulin-sensitive and -resistant TNBC PDX models, regardless of PI3K pathway alterations or PTEN status. Copanlisib reduced PI3K signaling and enhanced eribulin-induced mitotic arrest. The combination enhanced induction of apoptosis compared with each drug alone. Interestingly, eribulin upregulated PI3K pathway signaling in PDX tumors, as demonstrated by increased tracer uptake by 18F-FDG PET scan and AKT phosphorylation by IHC. These changes were inhibited by the addition of copanlisib. These data support further clinical development for the combination of copanlisib and eribulin and led to a phase I/II trial of copanlisib and eribulin in patients with metastatic TNBC. SIGNIFICANCE: In this research, we demonstrated that the pan-PI3K inhibitor copanlisib enhanced the cytotoxicity of eribulin in a panel of TNBC PDX models. The improved tumor growth inhibition was irrespective of PI3K pathway alteration and was corroborated by the enhanced mitotic arrest and apoptotic induction observed in PDX tumors after combination therapy compared with each drug alone. These data provide the preclinical rationale for the clinical testing in TNBC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Furans , Ketones , Pyrimidines , Triple Negative Breast Neoplasms , Xenograft Model Antitumor Assays , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Ketones/pharmacology , Ketones/administration & dosage , Ketones/therapeutic use , Animals , Furans/pharmacology , Furans/administration & dosage , Furans/therapeutic use , Humans , Female , Mice , Pyrimidines/pharmacology , Pyrimidines/administration & dosage , Pyrimidines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Apoptosis/drug effects , Quinazolines/pharmacology , Quinazolines/administration & dosage , Quinazolines/therapeutic use , Signal Transduction/drug effects , Cell Proliferation/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Polyether Polyketides
3.
Nat Commun ; 15(1): 2503, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509064

ABSTRACT

Targeting the mitogen-activated protein kinase (MAPK) cascade in pancreatic ductal adenocarcinoma (PDAC) remains clinically unsuccessful. We aim to develop a MAPK inhibitor-based therapeutic combination with strong preclinical efficacy. Utilizing a reverse-phase protein array, we observe rapid phospho-activation of human epidermal growth factor receptor 2 (HER2) in PDAC cells upon pharmacological MAPK inhibition. Mechanistically, MAPK inhibitors lead to swift proteasomal degradation of dual-specificity phosphatase 6 (DUSP6). The carboxy terminus of HER2, containing a TEY motif also present in extracellular signal-regulated kinase 1/2 (ERK1/2), facilitates binding with DUSP6, enhancing its phosphatase activity to dephosphorylate HER2. In the presence of MAPK inhibitors, DUSP6 dissociates from the protective effect of the RING E3 ligase tripartite motif containing 21, resulting in its degradation. In PDAC patient-derived xenograft (PDX) models, combining ERK and HER inhibitors slows tumour growth and requires cytotoxic chemotherapy to achieve tumour regression. Alternatively, MAPK inhibitors with trastuzumab deruxtecan, an anti-HER2 antibody conjugated with cytotoxic chemotherapy, lead to sustained tumour regression in most tested PDXs without causing noticeable toxicity. Additionally, KRAS inhibitors also activate HER2, supporting testing the combination of KRAS inhibitors and trastuzumab deruxtecan in PDAC. This study identifies a rational and promising therapeutic combination for clinical testing in PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Mitogen-Activated Protein Kinases/metabolism , Cell Line, Tumor
4.
Cancer Res ; 83(24): 4161-4178, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38098449

ABSTRACT

Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , MAP Kinase Signaling System , Immune Checkpoint Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1 , Endothelial Cells/pathology , Protein Kinase Inhibitors/adverse effects , Anilides/pharmacology , Anilides/therapeutic use , RNA, Small Nuclear/therapeutic use
5.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961519

ABSTRACT

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

6.
J Clin Oncol ; 41(26): 4192-4199, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37672882

ABSTRACT

PURPOSE: To improve on current standards for breast cancer prognosis and prediction of chemotherapy benefit by developing a risk model that incorporates the gene expression-based "intrinsic" subtypes luminal A, luminal B, HER2-enriched, and basal-like. METHODS: A 50-gene subtype predictor was developed using microarray and quantitative reverse transcriptase polymerase chain reaction data from 189 prototype samples. Test sets from 761 patients (no systemic therapy) were evaluated for prognosis, and 133 patients were evaluated for prediction of pathologic complete response (pCR) to a taxane and anthracycline regimen. RESULTS: The intrinsic subtypes as discrete entities showed prognostic significance (P = 2.26E-12) and remained significant in multivariable analyses that incorporated standard parameters (estrogen receptor status, histologic grade, tumor size, and node status). A prognostic model for node-negative breast cancer was built using intrinsic subtype and clinical information. The C-index estimate for the combined model (subtype and tumor size) was a significant improvement on either the clinicopathologic model or subtype model alone. The intrinsic subtype model predicted neoadjuvant chemotherapy efficacy with a negative predictive value for pCR of 97%. CONCLUSION: Diagnosis by intrinsic subtype adds significant prognostic and predictive information to standard parameters for patients with breast cancer. The prognostic properties of the continuous risk score will be of value for the management of node-negative breast cancers. The subtypes and risk score can also be used to assess the likelihood of efficacy from neoadjuvant chemotherapy.

7.
NPJ Breast Cancer ; 8(1): 134, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36585404

ABSTRACT

Atezolizumab with chemotherapy has shown improved progression-free and overall survival in patients with metastatic PD-L1 positive triple negative breast cancer (TNBC). Atezolizumab with anthracycline- and taxane-based neoadjuvant chemotherapy has also shown increased pathological complete response (pCR) rates in early TNBC. This trial evaluated neoadjuvant carboplatin and paclitaxel with or without atezolizumab in patients with clinical stages II-III TNBC. The co-primary objectives were to evaluate if chemotherapy and atezolizumab increase pCR rate and tumor infiltrating lymphocyte (TIL) percentage compared to chemotherapy alone in the mITT population. Sixty-seven patients (ages 25-78 years; median, 52 years) were randomly assigned - 22 patients to Arm A, and 45 to Arm B. Median follow up was 6.6 months. In the modified intent to treat population (all patients evaluable for the primary endpoints who received at least one dose of combination therapy), the pCR rate was 18.8% (95% CI 4.0-45.6%) in Arm A, and 55.6% (95% CI 40.0-70.4%) in Arm B (estimated treatment difference: 36.8%, 95% CI 8.5-56.6%; p = 0.018). Grade 3 or higher treatment-related adverse events occurred in 62.5% of patients in Arm A, and 57.8% of patients in Arm B. One patient in Arm B died from recurrent disease during the follow-up period. TIL percentage increased slightly from baseline to cycle 1 in both Arm A (mean ± SD: 0.6% ± 21.0%) and Arm B (5.7% ± 15.8%) (p = 0.36). Patients with pCR had higher median TIL percentages (24.8%) than those with non-pCR (14.2%) (p = 0.02). Although subgroup analyses were limited by the small sample size, PD-L1-positive patients treated with chemotherapy and atezolizumab had a pCR rate of 75% (12/16). The addition of atezolizumab to neoadjuvant carboplatin and paclitaxel resulted in a statistically significant and clinically relevant increased pCR rate in patients with clinical stages II and III TNBC. (Funded by National Cancer Institute).

8.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Article in English | MEDLINE | ID: mdl-35995947

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/metabolism , Cell Transformation, Neoplastic/genetics , Humans , Pancreas/metabolism , Pancreatic Neoplasms/metabolism , Tumor Microenvironment/genetics , Pancreatic Neoplasms
10.
Nat Commun ; 12(1): 5086, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429404

ABSTRACT

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.


Subject(s)
Heterografts , Neoplasms/genetics , Neoplasms/metabolism , Xenograft Model Antitumor Assays , Animals , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genome , Genomics , Humans , Male , Mice , Models, Biological , Mutation , Transcriptome
12.
Nat Genet ; 53(1): 86-99, 2021 01.
Article in English | MEDLINE | ID: mdl-33414553

ABSTRACT

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


Subject(s)
DNA Copy Number Variations/genetics , Xenograft Model Antitumor Assays , Animals , Databases, Genetic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasm Metastasis , Polymorphism, Single Nucleotide/genetics , Exome Sequencing
13.
Cancers (Basel) ; 12(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371187

ABSTRACT

PI3K pathway activation is frequently observed in triple negative breast cancer (TNBC). However, single agent PI3K inhibitors have shown limited anti-tumor activity. To investigate biomarkers of response and resistance mechanisms, we tested 17 TNBC patient-derived xenograft (PDX) models representing diverse genomic backgrounds and varying degrees of PI3K pathway signaling activities for their tumor growth response to the pan-PI3K inhibitor, BKM120. Baseline and post-treatment PDX tumors were subjected to reverse phase protein array (RPPA) to identify protein markers associated with tumor growth response. While BKM120 consistently reduced PI3K pathway activity, as demonstrated by reduced levels of phosphorylated AKT, percentage tumor growth inhibition (%TGI) ranged from 35% in the least sensitive to 84% in the most sensitive model. Several biomarkers showed significant association with resistance, including elevated baseline levels of growth factor receptors (EGFR, pHER3 Y1197), PI3Kp85 regulatory subunit, anti-apoptotic protein BclXL, EMT (Vimentin, MMP9, IntegrinaV), NFKB pathway (IkappaB, RANKL), and intracellular signaling molecules including Caveolin, CBP, and KLF4, as well as treatment-induced increases in the levels of phosphorylated forms of Aurora kinases. Interestingly, increased AKT phosphorylation or PTEN loss at baseline were not significantly correlated to %TGI. These results provide important insights into biomarker development for PI3K inhibitors in TNBC.

14.
Breast Cancer Res Treat ; 179(1): 197-206, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31542876

ABSTRACT

PURPOSE: Multi-gene signatures provide biological insight and risk stratification in breast cancer. Intrinsic molecular subtypes defined by mRNA expression of 50 genes (PAM50) are prognostic in hormone-receptor positive postmenopausal breast cancer. Yet, for 25-40% in the PAM50 intermediate risk group, long-term risk remains uncertain. Our study aimed to (i) test the long-term prognostic value of the PAM50 signature in pre- and post-menopausal breast cancer; (ii) investigate if the PAM50 model could be improved by addition of other mRNAs implicated in oncogenesis. METHODS: We used archived FFPE samples from 1723 breast cancer survivors; high quality reads were obtained on 1253 samples. Transcript expression was quantified using a custom codeset with probes for > 100 targets. Cox models assessed gene signatures for breast cancer relapse and survival. RESULTS: Over 15 + years of follow-up, PAM50 subtypes were (P < 0.01) associated with breast cancer outcomes after accounting for tumor stage, grade and age at diagnosis. Results did not differ by menopausal status at diagnosis. Women with Luminal B (versus Luminal A) subtype had a > 60% higher hazard. Addition of a 13-gene hypoxia signature improved prognostication with > 40% higher hazard in the highest vs lowest hypoxia tertiles. CONCLUSIONS: PAM50 intrinsic subtypes were independently prognostic for long-term breast cancer survival, irrespective of menopausal status. Addition of hypoxia signatures improved risk prediction. If replicated, incorporating the 13-gene hypoxia signature into the existing PAM50 risk assessment tool, may refine risk stratification and further clarify treatment for breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cancer Survivors/statistics & numerical data , Gene Expression Profiling/methods , Adult , Aged , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Hypoxia , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Staging , Prognosis , Survival Analysis
15.
Cancer Epidemiol Biomarkers Prev ; 28(9): 1525-1533, 2019 09.
Article in English | MEDLINE | ID: mdl-31186261

ABSTRACT

BACKGROUND: There is substantial variation in breast cancer survival rates, even among patients with similar clinical and genomic profiles. New biomarkers are needed to improve risk stratification and inform treatment options. Our aim was to identify novel miRNAs associated with breast cancer survival and quantify their prognostic value after adjusting for established clinical factors and genomic markers. METHODS: Using the Women's Healthy Eating and Living (WHEL) breast cancer cohort with >15 years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 miRNAs using the Nanostring nCounter platform. RESULTS: We obtained high-quality reads on 1,253 samples (75% of available specimens) and used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). We identified miRNAs significantly associated with breast cancer outcomes and then tested these in independent TCGA samples. miRNAs that were also prognostic in TCGA samples were further evaluated in multiple regression Cox models. We also used penalized regression for unbiased discovery. CONCLUSIONS: Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the WHEL and TCGA studies and further improved risk stratification within PAM50 risk groups: 10-year survival was 62% in the node-negative high miR-210-high ROR-PT group versus 75% in the low miR-210- high ROR-PT group. Similar results were obtained for miR-29c. We identified three additional miRNAs, 187-3p, 143-3p, and 205-5p, via penalized regression. IMPACT: Our findings suggest that miRNAs might be prognostic for long-term breast cancer survival and might improve risk stratification. Further research to incorporate miRNAs into existing clinicogenomic signatures is needed.


Subject(s)
Breast Neoplasms/genetics , Adolescent , Adult , Aged , Breast Neoplasms/mortality , Female , Humans , Middle Aged , Survival Analysis , Young Adult
16.
Mol Cell Proteomics ; 18(8): 1630-1650, 2019 08.
Article in English | MEDLINE | ID: mdl-31196969

ABSTRACT

Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.


Subject(s)
Breast Neoplasms/metabolism , Protein Kinases/metabolism , Female , Humans , Phosphorylation , Signal Transduction
17.
Nat Commun ; 9(1): 4850, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429476

ABSTRACT

The original version of this Article contained errors in the depiction of confidence intervals in the NF1 BCSS data illustrated in Figure 3b. These have now been corrected in both the PDF and HTML versions of the Article. The incorrect version of Figure 3b is presented in the associated Author Correction.

18.
Nat Commun ; 9(1): 3476, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30181556

ABSTRACT

Here we report targeted sequencing of 83 genes using DNA from primary breast cancer samples from 625 postmenopausal (UBC-TAM series) and 328 premenopausal (MA12 trial) hormone receptor-positive (HR+) patients to determine interactions between somatic mutation and prognosis. Independent validation of prognostic interactions was achieved using data from the METABRIC study. Previously established associations between MAP3K1 and PIK3CA mutations with luminal A status/favorable prognosis and TP53 mutations with Luminal B/non-luminal tumors/poor prognosis were observed, validating the methodological approach. In UBC-TAM, NF1 frame-shift nonsense (FS/NS) mutations were also a poor outcome driver that was validated in METABRIC. For MA12, poor outcome associated with PIK3R1 mutation was also reproducible. DDR1 mutations were strongly associated with poor prognosis in UBC-TAM despite stringent false discovery correction (q = 0.0003). In conclusion, uncommon recurrent somatic mutations should be further explored to create a more complete explanation of the highly variable outcomes that typifies ER+ breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/mortality , Mutation , Adult , Breast Neoplasms/metabolism , Case-Control Studies , Class I Phosphatidylinositol 3-Kinases/genetics , Class Ia Phosphatidylinositol 3-Kinase , Cohort Studies , Discoidin Domain Receptor 1/genetics , Female , Humans , MAP Kinase Kinase Kinase 1/genetics , Middle Aged , Neurofibromin 1/genetics , Phosphatidylinositol 3-Kinases/genetics , Postmenopause , Prognosis , Receptors, Estrogen/metabolism , Survival Analysis
19.
Cell Rep ; 24(6): 1434-1444.e7, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30089255

ABSTRACT

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1-6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Subject(s)
Breast Neoplasms/genetics , Estrogen Receptor alpha/genetics , Gene Fusion/genetics , Breast Neoplasms/pathology , Female , Humans , Transfection
20.
Nat Protoc ; 13(7): 1632-1661, 2018 07.
Article in English | MEDLINE | ID: mdl-29988108

ABSTRACT

Here we present an optimized workflow for global proteome and phosphoproteome analysis of tissues or cell lines that uses isobaric tags (TMT (tandem mass tags)-10) for multiplexed analysis and relative quantification, and provides 3× higher throughput than iTRAQ (isobaric tags for absolute and relative quantification)-4-based methods with high intra- and inter-laboratory reproducibility. The workflow was systematically characterized and benchmarked across three independent laboratories using two distinct breast cancer subtypes from patient-derived xenograft models to enable assessment of proteome and phosphoproteome depth and quantitative reproducibility. Each plex consisted of ten samples, each being 300 µg of peptide derived from <50 mg of wet-weight tissue. Of the 10,000 proteins quantified per sample, we could distinguish 7,700 human proteins derived from tumor cells and 3100 mouse proteins derived from the surrounding stroma and blood. The maximum deviation across replicates and laboratories was <7%, and the inter-laboratory correlation for TMT ratio-based comparison of the two breast cancer subtypes was r > 0.88. The maximum deviation for the phosphoproteome coverage was <24% across laboratories, with an average of >37,000 quantified phosphosites per sample and differential quantification correlations of r > 0.72. The full procedure, including sample processing and data generation, can be completed within 10 d for ten tissue samples, and 100 samples can be analyzed in ~4 months using a single LC-MS/MS instrument. The high quality, depth, and reproducibility of the data obtained both within and across laboratories should enable new biological insights to be obtained from mass spectrometry-based proteomics analyses of cells and tissues together with proteogenomic data integration.


Subject(s)
Breast Neoplasms/pathology , Chromatography, Liquid/methods , Mass Spectrometry/methods , Phosphoproteins/analysis , Proteome/analysis , Proteomics/methods , Animals , Benchmarking , Disease Models, Animal , Female , Heterografts , High-Throughput Screening Assays/methods , Humans , Mice , Neoplasm Transplantation , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL