Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
Accid Anal Prev ; 80: 7-17, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25846230

ABSTRACT

Road traffic injuries account for 1.3 million deaths per year world-wide. Mitigating both fatalities and injuries requires a detailed understanding of the tolerance of the human body to external load. To identify research priorities, it is necessary to periodically compare trends in injury tolerance research to the characteristics of injuries occurring in the field. This study sought to perform a systematic review on the last twenty years of experimental injury tolerance research, and to evaluate those results relative to available epidemiologic data. Four hundred and eight experimental injury tolerance studies from 1990-2009 were identified from a reference index of over 68,000 papers. Examined variables included the body regions, ages, and genders studied; and the experimental models used. Most (20%) of the publications studied injury to the spine. There has also been a substantial volume of biomechanical research focused on upper and lower extremity injury, thoracic injury, and injury to the elderly - although these injury types still occur with regularity in the field. In contrast, information on pediatric injury and physiological injury (especially in the central nervous system) remains lacking. Given their frequency of injury in the field, future efforts should also include improving our understanding of tolerances and protection of vulnerable road users (e.g., motorcyclists, pedestrians).


Subject(s)
Accidents, Traffic , Wounds and Injuries/prevention & control , Wounds and Injuries/physiopathology , Adolescent , Adult , Aged , Automobiles , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Research , Wounds and Injuries/epidemiology , Young Adult
2.
J Biomech Eng ; 132(9): 094501, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20815649

ABSTRACT

The costal-cartilage in the human ribcage is a composite structure consisting of a cartilage substance surrounded by a fibrous, tendon-like perichondrium. Current computational models of the human ribcage represent the costal-cartilage as a homogeneous material, with no consideration for the mechanical contributions of the perichondrium. This study sought to investigate the role of the perichondrium in the structural mechanical behavior of the costal-cartilage. Twenty-two specimens of postmortem human costal-cartilage were subjected to cantilevered-like loading both with the perichondrium intact and with the perichondrium removed. The test method was chosen to approximate the cartilage loading that occurs when a concentrated, posteriorly directed load is applied to the midsternum. The removal of the perichondrium resulted in a statistically significant (two-tailed Student's t-test, p< or =0.05) decrease of approximately 47% (95% C.I. of 35-58%) in the peak anterior-posterior reaction forces generated during the tests. When tested with the perichondrium removed, the specimens also exhibited failure in the cartilage substance in the regions that experienced tension from bending. These results suggest that the perichondrium does contribute significantly to the stiffness and strength of the costal-cartilage structure under this type loading, and should be accounted for in computational models of the thorax and ribcage.


Subject(s)
Cartilage/physiology , Hyaline Cartilage/physiology , Adult , Aged , Aged, 80 and over , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Ribs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL