Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Type of study
Publication year range
1.
Bull Volcanol ; 77(7): 60, 2015.
Article in English | MEDLINE | ID: mdl-26190880

ABSTRACT

Tephra particles in physically and chemically evolving volcanic plumes and clouds carry soluble sulphate and halide salts to the Earth's surface, ultimately depositing volcanogenic compounds into terrestrial or aquatic environments. Upon leaching of tephra in water, these salts dissolve rapidly. Previous studies have investigated the spatial and temporal variability of tephra leachate compositions during an eruption in order to gain insight into the mechanisms of gas-tephra interaction which emplace those salts. However, the leachate datasets analysed are typically small and may poorly represent the natural variability and complexity of tephra deposits. Here, we have conducted a retrospective analysis of published leachate analyses from the 18 May 1980 eruption of Mount St. Helens, Washington, analysing the spatial structure of the concentrations and relative abundances of soluble Ca, Cl, Na and S across the deposits. We have identified two spatial features: (1) concentrated tephra leachate compositions in blast deposits to the north of the volcano and (2) low S/Cl and Na/Cl ratios around the Washington-Idaho border. By reference to the bulk chemistry and granulometry of the deposit and to current knowledge of gas-tephra interactions, we suggest that the proximal enrichments are the product of pre-eruptive gas uptake during cryptodome emplacement. We speculate that the low S/Cl and Na/Cl ratios reflect a combination of compositional dependences on high-temperature SO2 uptake and preferential HCl uptake by hydrometeor-tephra aggregates, manifested in terrestrial deposits by tephra sedimentation and fallout patterns. However, despite our interrogation of the most exhaustive tephra leachate dataset available, it has become clear in this effort that more detailed insights into gas-tephra interaction mechanisms are prevented by the prevalent poor temporal and spatial representativeness of the collated data and the limited characterisation of the tephra deposits. Future leachate studies should aim to extensively sample across tephra deposit limits whilst simultaneously characterising deposit stratigraphy and tephra chemistry, mineralogy and granulometry, taking steps to ensure the quality and comparability of collected leachate datasets.

2.
Environ Res ; 127: 63-73, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24267795

ABSTRACT

The six week eruption of Eyjafjallajökull volcano in 2010 produced heavy ash fall in a sparsely populated area of southern and south eastern Iceland and disrupted European commercial flights for at least 6 days. We adopted a protocol for the rapid analysis of volcanic ash particles, for the purpose of informing respiratory health risk assessments. Ash collected from deposits underwent a multi-laboratory physicochemical and toxicological investigation of their mineralogical parameters associated with bio-reactivity, and selected in vitro toxicology assays related to pulmonary inflammatory responses. Ash from the eruption of Grímsvötn, Iceland, in 2011 was also studied. The results were benchmarked against ash from Soufrière Hills volcano, Montserrat, which has been extensively studied since the onset of eruptive activity in 1995. For Eyjafjallajökull, the grain size distributions were variable: 2-13 vol% of the bulk samples were <4 µm, with the most explosive phases of the eruption generating abundant respirable particulate matter. In contrast, the Grímsvötn ash was almost uniformly coarse (<3.5 vol%<4 µm material). Surface area ranged from 0.3 to 7.7 m2 g(-1) for Eyjafjallajökull but was very low for Grímsvötn (<0.6 m2 g(-1)). There were few fibre-like particles (which were unrelated to asbestos) and the crystalline silica content was negligible in both eruptions, whereas Soufrière Hills ash was cristobalite-rich with a known potential to cause silicosis. All samples displayed a low ability to deplete lung antioxidant defences, showed little haemolysis and low acute cytotoxicity in human alveolar type-1 like epithelial cells (TT1). However, cell-free tests showed substantial hydroxyl radical generation in the presence of hydrogen peroxide for Grímsvötn samples, as expected for basaltic, Fe-rich ash. Cellular mediators MCP-1, IL-6, and IL-8 showed chronic pro-inflammatory responses in Eyjafjallajökull, Grímsvötn and Soufrière Hills samples, despite substantial differences in the sample mineralogy and eruptive styles. The value of the pro-inflammatory profiles in differentiating the potential respiratory health hazard of volcanic ashes remains uncertain in a protocol designed to inform public health risk assessment, and further research on their role in volcanic crises is warranted.


Subject(s)
Air Pollutants/toxicity , Lung/drug effects , Volcanic Eruptions/analysis , Cell Line/drug effects , Epithelial Cells/drug effects , Humans , Hydroxyl Radical/metabolism , Iceland , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Lung/physiopathology , Minerals/analysis , Particle Size , Risk Assessment , Silicon Dioxide , Toxicity Tests
3.
Environ Sci Technol ; 35(7): 1289-93, 2001 Apr 01.
Article in English | MEDLINE | ID: mdl-11348058

ABSTRACT

Certain volcanoes constitute the world's largest sources of SO2, HCl, and HF emissions and contribute significantly to regional acid deposition. However, the impact of volcanic acid emissions to nearby ecosystems remain poorly documented. In this paper, the spatial pattern of acid dry depositions was monitored within 44 km of Masaya Volcano, Nicaragua, with a network of sulfation plates. Measured SO2 deposition rates were <2-791 mg m(-2) day(-1). The plates also collected the dry deposition of HCI at rates of <1-297 mg m(-2) day(-1). A similar deposition velocity Vd (gas transfer) of 1.6 +/- 0.8 cm/s was calculated for SO2 and HCl above the plate surfaces. Quantities of SO2 and HCI deposited daily within the area surveyed amounted to 1.5 x 10(8) g and 5.7 x 10(7) g, respectively, which correspond to about 10% of the total SO2 and HCl released by the volcano. These depositions may generate an equivalent hydrogen flux ranging from <1 to 30 mg m(-2) day(-1). Our results demonstrate that volcano emissions can dramatically affect acid deposition downwind and in turn cause extreme acid loading of the local ecosystems. This study opens exciting prospects for investigating the sensivity of volcanic ash soils to acid inputs.


Subject(s)
Acid Rain , Hydrochloric Acid/analysis , Sulfur Dioxide/analysis , Volcanic Eruptions , Air Movements , Ecosystem , Environmental Monitoring , Hydrogen/chemistry , Nicaragua
SELECTION OF CITATIONS
SEARCH DETAIL